Self Studies

Measures of Central Tendency Test - 25

Result Self Studies

Measures of Central Tendency Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The median of a set of 99 distinct observations is 20.520.5. If each of the largest 44 observation of the set is increased by 22, then the median of the new set
    Solution
    SinceSince n=9,n= 9, thethe medianmedian willwill bebe thethe 5th(9+12)term.5th(\frac{9 + 1}{2}) term.
    IfIf thethe largestlargest 44 termsterms areare increasedincreased byby 2,2, therethere isis nono effecteffect onon thethe 5th5th term,term, implyingimplying medianmedian willwill remainremain same.same.
  • Question 2
    1 / -0
    In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average marks of the complete class are 72, then the average marks of the girls :
    Solution
    Average of marks of 7070  boys =7575

    Sum of marks of 7070 boys = 75×7075\times70 = 52505250

    Average of marks of whole class = 7272

    Sum of marks of whole class = 100×72100\times72 = 7200

    Sum of marks of 3030 girls =72005250=1950 7200-5250 = 1950

    Average of marks of girls = 195030\dfrac{1950}{30} =65 65
  • Question 3
    1 / -0
    If mode of the following data is 77, then the value of kk in the 2,4,6,7,5,6,10,6,7,2k+1,9,7,132, 4, 6, 7, 5, 6, 10, 6, 7, 2k + 1, 9, 7, 13 is:
    Solution
    Mode is the value which occurs most often in the data set of values.
    Given data values are 2,4,6,7,5,6,10,6,7,2k+1,9,7,132,4,6,7,5,6,10,6,7,2k+1,9,7,13
    In the above data set, values 6,76,7 have occured more times i.e., 3 times

    But given that mode is 77. So, should occur more times than 66. Hence the variable 2k+12k+1 must be 7

        2k+1=7\implies 2k+1=7

        2k=6    k=62\implies 2k=6 \implies k=\dfrac 62

        k=3\implies k=3
  • Question 4
    1 / -0
    The numbers 3,5,73, 5, 7 and 99  have their respective frequencies  x2, x+2,x3 x-2, x+2, x-3   and x+3 x+3. If the arithmetic mean is 6.56.5, then the value of x x is
    Solution
    Mean = 6.5=3×(x2)+5×(x+2)+7×(x3)+9×(x+3)x2+x+2+x3+x+3= 6.5 = \dfrac{3 \times (x-2) + 5 \times (x + 2) + 7 \times (x - 3) + 9 \times (x + 3)}{x-2+x+2+x-3+x+3}
    \therefore 6.5=3x6+5x+10+7x21+9x+274x6.5 = \dfrac{3x - 6 + 5x + 10 + 7x - 21 + 9x + 27}{4x}
    \therefore 6.5×4x=24x+106.5 \times 4x = 24x + 10
    \therefore 26x24x=1026x - 24x = 10
    \therefore x=5x = 5
  • Question 5
    1 / -0
    Mode of the data
    15,14,19,20,14,15,16,14,15,18,14,19,15,17,1515, 14, 19, 20, 14, 15, 16, 14, 15, 18, 14, 19, 15, 17, 15 is
    Solution
    Given Data: 
    15,14,19,20,14,15,16,14,15,18,14,19,15,17,1515, 14, 19, 20, 14, 15, 16, 14, 15, 18, 14, 19, 15, 17, 15 

    Arranging it in ascending order: 14,14,14,14,1514,14,14,14,15,15,15,15,15,16,17,18,19,19,2015,15,15,15,16,17,18,19,19,20

    1515 occurs 55 times and most number of time. 

    Hence, it is the mode of the data.
  • Question 6
    1 / -0
    Median of the following numbers:
    4,4,5,7,6,7,7,12,34, 4, 5, 7, 6, 7, 7, 12, 3 is
    Solution
    Terms are: 4,4,5,7,6,7,7,12,34, 4, 5, 7, 6, 7, 7, 12, 3.
    Arranging the terms in ascending order: 3,4,4,5,6,7,7,7,123,4,4,5,6,7,7,7,12.

    Since the number of terms is odd the median will be the middle term i.e. 5th5^{th} term which is 66.
  • Question 7
    1 / -0

    Directions For Questions

    The following table gives the weekly wages of workers in a factory :
    Weekly wagesMid-value (xi)(x_i)No. of (fi)(f_i) workersfixif_ix_iCumulativefrequency
    50-5552.55262.55
    55-6057.5201150.025
    60-6562.510625.035
    65-7067.510675.045
    70-7572.59652.054
    75-8077.56465.060
    80-8582.512990.072
    85-9087.58700.080
    fi=80\sum f_i=80fixi=5520\sum f_ix_i =5520

    ...view full instructions

    The mean is
    Solution
    Mean of a frequency distribution =fixifi\displaystyle \dfrac{\sum f_i x_i}{\sum f_i}
    Mean =552080= \dfrac {5520}{80}
    Mean =69= 69
  • Question 8
    1 / -0
    If three sets of data had means of 15,22.515, 22.5 and  2424  based on 6,4,6, 4, and 55 observations respectively, then the mean of these three sets combined is
    Solution
    Mean of combined three sets =Total SumTotal Count=\dfrac{Total \space Sum}{Total \space Count}
    =15×6+ 22.5×4+ 24×56+4+5=\dfrac{15\times6 + 22.5\times4 + 24\times5}{6+4+5}
    =30015=\dfrac{300}{15}
    =20= 20
  • Question 9
    1 / -0
    The mean weight of 2020  students is 2525 kg and the mean weight of another 1010 students is 4040 kg. Find the mean weight of the 3030 students.
    Solution
    $$
    \text{Given Mean  weight of 20 students}=25\\ \Rightarrow \dfrac { \text{Sum of weight of 20 students} }{ 20 } =25\\
    \Rightarrow \text{Sum of weight of 20 students}=25\times 20=500kg\\
    \text{Given Mean weight of 10 students}=40\\ \Rightarrow \dfrac { \text{Sum of weight of 10 students} }{ 10 } =40\\
    \Rightarrow \text{Sum of weight of 10 students}=40\times 10=400kg$$
    Mean weight of all 30 students
    $$\Rightarrow \dfrac { \text{Sum of weight of 30 students} }{ 30 } \\
    \Rightarrow \dfrac { \text{Sum of weight of 20 students+Sum of weight of 10 students} }{ 30 } \\
    =\dfrac { 500+400 }{ 30 } =\dfrac { 900 }{ 30 } =30kg
    $$
  • Question 10
    1 / -0
    The number of observations in a group is 4040 . If the average of first  1010  is  4.54.5  and that of the remaining  3030  is  3.53.5, then the average of the whole group is
    Solution

    Step -1: Finding the sum of first 10 observations.\textbf{Step -1: Finding the sum of first 10 observations.}

                    Average of first 10 observations=4.5\text{Average of first 10 observations}=4.5

                    Average=Sum of observationsNumber of observations.\mathbf{\because\text{Average}=\dfrac{\text{Sum of observations}}{\text{Number of observations}}.}

                    4.5=Sum of first 10 observations10\therefore4.5=\dfrac{\text{Sum of first 10 observations}}{10}

                    Sum of first 10 observations=4.5×10=45\Rightarrow\text{Sum of first 10 observations}=4.5\times10=45

    Step -2: Finding the sum of remaining 30 observations.\textbf{Step -2: Finding the sum of remaining 30 observations.}

                    Average of remaining 30 observations=3.5\text{Average of remaining 30 observations}=3.5

                    3.5=Sum of remaining 30 observations30\therefore3.5=\dfrac{\text{Sum of remaining 30 observations}}{30}

                    Sum of remaining 30 observations=3.5×30=105\Rightarrow\text{Sum of remaining 30 observations}=3.5\times30=105

    Step -3: Finding the average of the whole group.\textbf{Step -3: Finding the average of the whole group.}

                    Sum of total 40 students=45+105=150\text{Sum of total 40 students}=45+105=150

                    Number of total observations=40\text{Number of total observations}=40

                    Average of the whole group=15040\text{Average of the whole group}=\dfrac{150}{40}

                    =154=\dfrac{15}{4}

     Hence, option B is correct.\textbf{ Hence, option B is correct.}

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now