Self Studies

Measures of Central Tendency Test - 28

Result Self Studies

Measures of Central Tendency Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Below is given frequency distribution of marks (out of 100) obtained by the students.
    Calculate mean marks scored by a student.
    Marks0 - 1010 - 2020 - 3030 - 4040 - 50 50 - 6060 - 7070 - 8080 - 9090 - 100
    No. of Students35710121512628
    Solution
     $$ci$$$$f_i$$ $$x_i$$ $$f_ix_i$$ 
     0-10 3 5 15
     10-20 5 15 75
     20-30 7 25 175
     30-40 10 35 350
     40-50 12 45 540
     50-60 15 55 825
     60-70 12 65 780
     70-80 6 75 450
     80-90 2 85 170
     90-100 8 95 760
    Consider the following table, to calculate mean:
    $$N=\Sigma f_i=80$$          
     $$\Sigma f_ix_i=4140$$

    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{4140}{80}=51.75$$
    Mean marks scored by a student is $$51.75$$ 
    Hence, option $$B$$ is correct.
  • Question 2
    1 / -0
    Find the mode of the following:
    $$18,14,22,23,14,18,17,28,28,14,25,14$$
    Solution
    The numbers are: $$18,14,22,23,14,18,17,28,28,14,25,14$$
    Arranging in ascending order: $$14, 14, 14, 14, 17, 18, 18,  22, 23,25, 28, 28$$
    $$14$$ occurs $$4$$ times and maximum number of times. 
    Hence, the mode of the above data is $$14$$
  • Question 3
    1 / -0
    If $$25$$ is the arithmetic mean of $$ X$$ and $$46,$$ then find $$X.$$
    Solution
    Since $$25$$ is the arithmetic mean of $$X$$ and $$46$$, 

    $$\therefore 25=\displaystyle \frac{(X+46)}{2}$$
    $$\therefore  X+46=50$$
    $$\therefore  X=4$$
  • Question 4
    1 / -0
    Following table gives age groupwise distribution of people suffering from 'Asthama' due to air pollution in certain city. Find mean age of person suffering from 'Asthama' .
    Age (in years)7 - 1111 - 1515 - 1919 - 2323 - 2727 - 3131 - 3535 - 39
    No. of People 5 9 13 21 16 15 12  9
    Solution
    Consider the following table, to calculate mean:
     $$ci$$$$ f_i$$ $$x_i$$ $$f_ix_i$$
     7-11 5 9 45
     11-15 9 13 117
     15-19 13 17 221
     19-23 21 21 441
     23-27 16 25 400
     27-31 15 29 435
     31-35 1233  396
     35-39 9 37 333
    $$N=\Sigma f_i=100$$          
     $$\Sigma f_ix_i=2388$$

    Mean $$\overline x=\dfrac {\Sigma f_ix_i}{N}$$
    $$\therefore \overline x=\dfrac{2388}{100}=23.88$$
    Mean age of people suffering from Asthama is $$23.88$$years
    Hence, option $$A$$ is correct.
  • Question 5
    1 / -0
    Following table gives frequency distribution of milk (in litres) given per week by 50 cows.
    Find average (mean) amount of milk given by a cow by 'shift of origin method'.
    Milk (in litres)24 - 3030 - 3636 - 4242 - 4848 - 5454 - 6060 - 6666 - 72 
    72 - 7878 - 8484 - 90
    No. of cows13855584623
    Solution
    Consider the following table, to calculate mean by "shift of origin method":
    $$x_i$$=mid value of class interval
    Assumed mean $$a=57$$

     $$ci$$ $$f_i$$ $$x_i$$$$d_i=x_i-a$$ $$f_id_i$$
    24-30 127 27-57= -30 -30
    30-36 333 33-57= -24 -72
    36-42 839 39-57= -18 -144
    42-48  545  45-57= -12 -60
    48-54  551 51-57= -6 -30
    54-60  557 57-57=0 0
    60-66  863  63-57=6  48
    66-72  469 69-57=12 48
    72-78  675  75-57=18 108
    78-84 281  81-57=24 48
    84-9087  87-57=30 90
     $$N=\Sigma f_i=50$$          
     $$\Sigma f_id_i=6$$

    Mean $$\overline x=a +\dfrac {\Sigma f_id_i}{N}$$
    $$\therefore \overline x=57 + \dfrac{6}{50}=57.12$$
    Average amount of milk given by cow is $$ 57.12$$ litres
    Hence, option $$C$$ is correct.
  • Question 6
    1 / -0
    The following observation are arranged in ascending order. If the median of the data is $$17$$, find $$x$$ if the observations are $$6, 8, 9, 15, x,x + 2, 21, 22, 25, 29.$$
    Solution
    The observations are: $$6, 8, 9, 15, x,x+2,21,22,25,29$$
    The number of observations are $$10$$. Since, the observations are even, the median will be the mean of $$\cfrac{n}{2}$$ and $$\cfrac{n}{2}+1$$ observations
    median $$=$$ mean of $$\cfrac{10}{2}$$ and $$\cfrac{10+2}{2}$$ observations
    median $$=$$ mean of $$5^{th}$$ and $$6^{th}$$ observations
    median = $$\cfrac{x + x+2}{2}$$
    $$17 = x + 1$$
    $$x = 16$$
  • Question 7
    1 / -0
    Below is given frequency distribution of dividend in percentage declared by 120 companies.
    Dividend (in %)10 - 1920 - 2930 - 3940 - 4950 - 59 60 -
    69
    70 - 79 
    No. of Companies515284215123
    Obtain mean dividend declared by a company by step deviation method.
    Solution
    Consider the following table, to calculate mean by "step deviation method":
    $$x_i$$=mid value of class interval
    Assumed mean $$a=44.5$$
    class interval $$c=10$$
     $$ci$$ $$f_i$$ $$x_i$$ $$u_i=\dfrac{x_i-a}{c}$$  $$f_iu_i$$
     $$9.5-19.5$$$$5$$ $$14.5$$$$\dfrac{14.5-44.5}{10}=-3$$ $$-15$$
     $$19.5-29.5$$$$15$$ $$24.5$$ $$-2$$ $$-30$$
     $$29.5-39.5$$$$28$$ $$34.5$$ $$-1$$ $$-28$$
     $$39.5-49.5$$$$42$$ $$44.5$$ $$0$$ $$0$$
     $$49.5-59.5$$$$15$$ $$54.5$$ $$1$$ $$15$$
     $$59.5-69.5$$$$12$$ $$64.5$$ $$2$$ $$24$$
     $$69.5-79.5$$$$3$$ $$74.5$$ $$3$$ $$9$$
     $$N=\Sigma f_i=120$$          
     $$\Sigma f_iu_i=-25$$

    Mean $$\overline x=a +\dfrac {\Sigma f_iu_i}{N}\times c$$

    $$\therefore \overline x=44.5 + \dfrac{-25}{120} \times 10=42.4166667 \Rightarrow 42.42$$
    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    Find the median of:
    $$25,16,26,16,32,31,19,28$$ and $$35$$
    Solution

    $$\textbf{Step -1: Arrange the given data in ascending order.}$$

                     $$\text{Arranging data in ascending order:}$$

                        $$16,16,19,25,26,28,31,32,35$$

    $$\textbf{Step -2: Find median of the given data.}$$

                     $$\text{Here, number of observations, }n=9(\text{odd number})$$

                     $$\mathbf{\because\text{Median}=\left(\dfrac{n+1}{2}\right)^\text{th}observation.}$$

                     $$\therefore \text{Median}=\left(\dfrac{9+1}{2}\right)^\text{th}\text{observation}$$

                                        $$=\bigg(\dfrac{10}{2}\bigg)^\text{th}\text{observation}$$

                                        $$=5^\text{th}\text{ observation}$$

                                        $$=26$$

    $$\textbf{Hence, the correct option is C.}$$

  • Question 9
    1 / -0
    Find the median of the following data:
    $$18,19, 20, 23, 22, 20, 17, 19, 25$$ and $$21$$
    Solution
    The given data series is: $$18,19, 20, 23, 22, 20, 17, 19, 25. 21$$
    Arranging it in increasing order: $$17, 18, 19, 19, 20, 20, 21, 22, 23, 25$$
    The number of terms in the series are $$10$$, which is even. Hence, the median will be the mean of the two middle numbers.
    Thus, median $$=$$ mean of $$5^{th}$$ term and $$6^{th}$$ term
    Median $$= \dfrac{20 + 20}{2}$$
    Median $$= 20$$
  • Question 10
    1 / -0
    What is the mean of first 8 whole numbers?
    Solution
    First $$8$$ whole numbers are $$ 0,1,2,3,4,5,6,7$$

    We know that, $$\text{Mean}=\dfrac{\text{Sum of all observations}}{\text{Total number of observations}}$$

    $$\therefore \ \text{Mean}=\dfrac {0+1+2+3+4+5+6+7}{8}$$
    $$\Rightarrow \dfrac {28}{8}=3.5$$
    Hence, the mean of first $$8$$ whole numbers is $$3.5$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now