Self Studies

Sets Test - 14

Result Self Studies

Sets Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$P =$$ Set of all integral multiples of $$3 $$; $$Q =$$ Set of integral multiples of $$4 $$; $$R =$$ Set of all integral multiples of $$6$$. Consider the following relations :
    $$1 $$ $$\displaystyle P\cup Q=R$$
    $$2.$$ $$\displaystyle P\subset R$$
    $$3.$$ $$\displaystyle R\subset \left ( P\cup Q \right )$$
    Which of the relations given above is/are correct ?
    Solution
    Given that P =$$\{3, 6, 9, 12, 15, 18, 21,...\}$$
        Q = $$\{4, 8, 12, 16, 20,...\}$$
        R = $$\{6, 12, 18,...\}$$
    Considering the choices given :
    1.  P $$\displaystyle \cup $$ Q = $$\{3, 4, 6, 8, 9, 12, 16, 18,...\}$$ $$\displaystyle \neq $$ R
    2.  All the element of P are not in R so P $$\displaystyle \nsubseteq $$ R
    3.  P $$\displaystyle \cup $$ Q = $$\{3, 4, 6, 8, 9, 12, 15, 16, 18, ...\}$$
    $$\displaystyle \Rightarrow $$ All the element of R are in P $$\displaystyle \cup $$ Q 
    $$\displaystyle \Rightarrow $$R $$\displaystyle \subset $$ (P$$\displaystyle \cup $$ Q)
  • Question 2
    1 / -0
    In a locality two-thirds of the people have cable TV one-fifth have Dish TV and one-tenth have both What is the fraction of people having either cable TV or Dish TV?

    Solution
    Fraction of people who watch cable only $$\displaystyle =\left ( \frac{2}{3}-\frac{1}{10} \right )=\frac{17}{30}$$
    Fraction of people who watch Dish TV only $$\displaystyle =\left ( \frac{1}{5}-\frac{1}{10} \right )=\frac{1}{10}$$
     $$\displaystyle\therefore $$ Fraction of people who watch either cable of Dish TV $$\displaystyle =\frac{17}{30}+\frac{1}{10}=\frac{20}{30}=\frac{2}{3}$$
  • Question 3
    1 / -0
    In an examination $$70\%$$ students passed both in Mathematics and Physics $$85\%$$ passed in Mathematics and $$80\%$$ passed in Physics If $$30$$ students have failed in both the subjects then the total number of students who appeared in the examination is equal to : 
    Solution
    Student passed in atleast one subject
    $$= n$$ $$\displaystyle \left ( P\cup M \right )= n\left ( P \right )+n\left ( M \right )-n\left ( P\cup M \right )$$
    $$= 80 + 85 - 70 = 95$$
    $$\displaystyle \therefore $$ $$5\%$$ student failed in both the subjects
    $$\displaystyle \Rightarrow $$$$5\%$$ of total students $$= 30$$
    $$\displaystyle \Rightarrow $$Total students = $$\displaystyle \frac{30\times 100}{5}= 600$$
  • Question 4
    1 / -0
    In a class of $$50$$ students $$35$$ opted for Mathematics and $$37$$ opted for Biology How may have opted for only Mathematics? ( Assume that each student has to opt for at least one of the subjects)
    Solution
    Here $$n$$$$\displaystyle \left ( M\cup B \right )$$ $$= 50$$, $$n(M) = 35$$, $$n(B) = 37$$
    $$\displaystyle \therefore n\left ( M\cap B \right )=n\left ( M \right )+n(B)-n\left ( M\cup B \right )$$
    $$= 35 + 37 - 50 = 22$$
    $$\displaystyle \Rightarrow $$ $$22 $$ student have opted for both Mathematics and Biology. 
    Now the number of students who have opted for Mathematics only
    $$= n(M) - n$$$$\displaystyle \left ( M\cap B \right )$$
    $$= 35 - 22 = 13$$
  • Question 5
    1 / -0
    If $$n(A) = 65, n(B) = 32$$ and $$\displaystyle n\left ( A\cap B \right )=14 $$, then $$\displaystyle n\left ( A\Delta  B \right ) $$ equals
    Solution
    $$\displaystyle n(A\Delta B)=n (A-B)+n(B-A)$$
    $$\displaystyle \therefore A\Delta B=(A-B)\cup (B-A)$$
    $$\Rightarrow A\Delta B=\displaystyle n(A)-n(A\cap B)+n(B)-n(A\cap B)$$
    $$\Rightarrow A\Delta B =n(A)+n(B)-2n(A\cap B)=65+32-2\times 14=69$$
    Hence, $$A\Delta B=69$$
  • Question 6
    1 / -0
    If $$n(A) = 115$$, $$n(B) = 326$$, $$n(A - B) = 47$$ then $$\displaystyle n\left ( A\cup B \right )$$ is equal to
    Solution
    $$n(A)=115,n(B)=326$$
    $$n(A-B)=47$$
    $$n(A)=n(A-B)+n(A\cap B)$$
    $$n(A\cap B)=n(A)-n(A-B)$$
    $$\therefore n(A\cap B)=115-47=68$$
    $$\therefore n(A\cup B)=n(A)+n(B)-n(A\cap B)$$
    $$\Rightarrow n(A\cup B)=115+326-68$$
    $$\Rightarrow n(A\cup B)=373$$
  • Question 7
    1 / -0
    If $$X$$ and $$Y$$ are any two non empty sets then what is $$\displaystyle \left ( X-Y \right )'$$ equal to?
    Solution
    $$X - Y$$ $$\displaystyle =\left \{ x :x \in X,x\notin Y \right \}$$
    $$\displaystyle =\left \{ x :x \in X,x\in  Y'\right \}$$
    $$\displaystyle \Rightarrow \left \{ x : x\in X\cap Y' \right \}$$
    $$\displaystyle \Rightarrow \left ( X-Y \right )'=(X\cap Y)'$$
    = $$\displaystyle X'\cup (Y')=X'\cup Y$$

  • Question 8
    1 / -0
    If $$A$$ and $$B$$ are non empty sets and A' and B' represents their compliments respectively then
    Solution
    Let $$ U \to$$ Universal set
    $$X\to U - (A+B) $$
    $$B'=X+A$$
    $$A'=X+B$$
    $$B'-A'= X+A-(X+B)$$
    $$=X+A-X-B$$
    $$B'-A'=A-B$$

  • Question 9
    1 / -0
    If $$\displaystyle \xi =\left \{ 2,3,4,5,6,7,8,9,10,11 \right \}$$
    $$\displaystyle A =\left \{ 3,5,7,9,11 \right \}$$
    $$\displaystyle B =\left \{ 7,8,9,10,11 \right \}$$, then find $$(A - B)'$$
    Solution
    $$A - B = \{3, 5\}$$
    $$(A - B)' = \{2,4,6,7,8,9,10,11\}$$
  • Question 10
    1 / -0
    If $$\displaystyle Q=\left\{ x:x=\frac { 1 }{ y } ,where\  \ y\ \in \ N \right\} $$, then find the correct one.
    Solution
    (A) Since $$\displaystyle y\neq\frac{1}{0}$$ then $$0\notin Q$$

    (B) Since $$\displaystyle y=\frac{1}{2}$$ as $$1\in N$$ then $$1\in Q$$

    (C) Since $$\displaystyle y\neq\frac{1}{2}$$ as $$\displaystyle\frac{1}{2}\notin N$$ then $$2\notin Q$$

    (D) Since $$\displaystyle y\neq\frac{3}{2}$$ as $$\displaystyle\frac{3}{2}\notin N$$ then $$\displaystyle\frac{2}{3}\notin Q$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now