Self Studies

Sets Test - 19

Result Self Studies

Sets Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A$$ and $$B$$ have $$3$$ and $$6$$ elements respectively. What can be the minimum number of elements in $$A\cup B$$?
    Solution
    Ans. $$(b)$$.
    $$n\left( A\cup B \right) =n(A)+n(B)-n\left( A\cap B \right)$$
    Now $$A$$ has $$3$$ elements and $$B$$ has $$6$$ elements. If they are disjoint, then $$n\left( A\cap B \right) =0$$.
    $$\therefore n\left( A\cup B \right) =6+3=9$$
    If $$A\subset B$$ then $$A\cup B=B$$
    $$\therefore \left( A\cup B \right) =n(B)=6$$
    $$B$$ cannot be a subset of $$A$$ and hence the other possibility of $$A\cup B=A$$ is ruled out.
  • Question 2
    1 / -0
    $$25$$ people for applied for programme $$A$$, $$50$$ people for programme $$B$$, $$10$$ people for both. So number of employee applied only for $$A$$ is
    Solution

    $$n(A - B) = n(A) - n(A \cap B) = 25 -10 -15$$
  • Question 3
    1 / -0
    If $$P(A) = 0.8 , P(B) = 0.5 $$ & $$P(B/A) =0.4 $$ find (i) $$P(A \cap B) $$ (ii) $$P(A/B)$$ (iii) $$P(A\cup B)$$.
    Solution

    $$\\\>P(\frac{B}{A})=\>\frac{P(B\>\cap\>A)}{P(A)}\\\>0.4=\frac{P(B\cap\>A)}{0.8}\\$$

    $$\therefore\>P(B\cap\>A)=0.32\\$$, $$\implies \>P(A\cap\>B)=0.32\\$$

    $$then\>\>P(\frac{A}{B})=\>\frac{P(A\>\cap\>B)}{P(B)}=(\frac{0.32}{0.5})=0.64\>\\$$

    $$and\>P(A\cup\>B)=P(A)+P(B)-P(A\cap\>B)\\=0.8+0.5-0.32\\\>=0.98$$

  • Question 4
    1 / -0
    Let $$A$$ is a finite set such that $$n(A)=6$$ then  $$n[P(A)]$$ is 
    Solution
    We have if a set contains $$n$$ element then its power set contains $$2^n$$ elements.
    In our problem $$n=6$$.
    Then $$n[P(A)]=2^6=64$$.
  • Question 5
    1 / -0
    Let $$A$$ and $$B$$ be two sets such that $$A\cap B=\phi$$. Find the value of $$(A\cup B')=$$
    Solution
    Given, $$A\cap B=\phi$$.
    Now,
    $$(A\cup B')$$
    $$=(A'\cap B)'$$ [ Using De Morgan's law]
    $$=B'$$. [ As $$A'\cap B=B-(A\cap B)=B$$ since $$A\cap B=\phi$$]

  • Question 6
    1 / -0
    Let $$n(A)=28$$,$$n(A\cap B)=8$$, $$n(A\cup B)=52$$, then $$n(A\cap B')=$$.
    Solution
    Given $$n(A)=28$$,$$n(A\cap B)=8$$.
    We have $$A\cap B'=A-A\cap B$$.
    This give $$n(A\cap B')=n(A)-n(A\cap B)$$
    or, $$n(A\cap B')=28-8=20$$.
  • Question 7
    1 / -0
    If $$n(A)$$ denotes the number of elements in set A and if $$n(A)=4, n(B)=5$$ and $$n(A\cap B)=3$$ then $$n\left[ \left( A\times B \right) \cap \left( B\times A \right)  \right] =$$
    Solution
    For $$(A\times B)\cap (B\times A)$$ we have to do the mapping of $$A\times B$$ or $$B\times A$$ between common elements.
     no. of ways of mapping will be $$3\times 3=9$$
    $$n[(A\times B)\cap(B\times A)]=9$$
  • Question 8
    1 / -0
    If two sets $$A$$ and $$B$$ are having $$80$$ elements in common, then the number of element common to each of the sets $$A\times B$$ and $$B\times A$$ are
    Solution

  • Question 9
    1 / -0
    Find the set of values of x for which it satisfies $$- 2 \le \left[ x \right] \le 4.$$ (where $$\left[  \ \  \right]$$ denotes the greatest integer function )
    Solution
    Given $$-2\leq[x]\leq 4$$

    As we know for$$ \left [ x \right ] \geq n \Rightarrow x\geq n$$ for $$ n\in Z$$
    and for $$[x]\leq n \Rightarrow x<  n+1$$ for$$ n\in Z$$

    $$\Rightarrow [x]\geq -2$$ and $$[x]\leq 4$$
    $$\Rightarrow x\geq -2$$ and $$x< (4+1)$$
    $$\Rightarrow x\geq -2$$ and $$x< 5$$
    $$\Rightarrow -2 \leq x < 5$$

    $$\therefore x\in [-2,5)$$
  • Question 10
    1 / -0
    Given P(A)=$$0.5,$$P(B)=$$0.2$$ and P(AB)=0.1;find
    Solution
    $$P(A)=0.5$$
    $$P(B)=0.2$$
    $$P(AB)=0.1$$
    $$(a)$$ $$P(A\cup B)=P(A)+P(B)-P(A)P(B)$$
    $$=[0.5+0.2-(0.5)(0.2)]$$
    $$\Rightarrow 0.7-0.1$$
    $$\Rightarrow 0.6$$
    $$(b)$$ $$P(\bar A \cup B)=(P(B)-P(A\cap B))$$
    $$P(A\cup B)=P(A)+P(B)-P((A\cap B))$$
    $$\Rightarrow 0.3=0.5+0.2-P(A\cap B)$$
    $$P(A\cap B)=0.1$$
    $$\because P(\bar A \cap B)=0.2-0.1$$
    $$=0.1$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now