Self Studies

Sets Test - 41

Result Self Studies

Sets Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
    Solution
    GivenP(s)={1,2,3} P(s)=allsubsetof5={ϕ,{1},{3},{1,2},{2,3},{3,1},{1,2,3} } No.ofelementof5=0(5)=3similarlyO(p(s) )=8Totalno.ofoneonefunction=n!(nm)!,wheren=o(p(s) )andm=o(5) =8!(83)!=8!5! =336   No.ofoneonefunctionis336Hence,  option  A  iscorrect,\begin{array}{l} Given \\ P\left( s \right) =\left\{ { 1,\, 2,\, 3 } \right\}  \\ P\left( s \right) =all\, subset\, of\, 5 \\ =\left\{ { \phi ,\left\{ 1 \right\} ,\left\{ 3 \right\} ,\left\{ { 1,2 } \right\} ,\left\{ { 2,3 } \right\} ,\left\{ { 3,1 } \right\} ,\left\{ { 1,2,3 } \right\}  } \right\}  \\ No.\, of\, element\, of\, 5=0\left( 5 \right) =3 \\ similarly \\ O\left( { p\left( s \right)  } \right) =8 \\ Total\, no.\, of\, one-one\, function \\ =\frac { { n! } }{ { \left( { n-m } \right) ! } } \, ,\, where\, n=o\left( { p\left( s \right)  } \right) \, and\, m=o\left( 5 \right)  \\ =\frac { { 8! } }{ { \left( { 8-3 } \right) ! } } =\frac { { 8! } }{ { 5! } }  \\ =336\, \,  \\ No.\, of\, one-one\, function\, is\, 336 \\ Hence,\, \, option\, \, A\, \, is\, correct, \end{array}

  • Question 2
    1 / -0
    In a group of 800 people, 550 can speak Hindi and 450 can speak English. How many can speak both Hindi and English ?
    Solution
    Let H denote the set of people speaking Hindi and E denote the set of people speaking English. We are given :
    n(H)=550,n(E)=450,n(HE)=800n(H)=550, n(E)=450, n(H\cup E)=800
    Now,
    n(HE)=n(H)+n(E)n(HE)n(H\cup E)=n(H)+n(E)-n(H\cap E)
    n(HE)=550+450800=200n(H \cap E)=550+450-800=200
    Hence, 200 persons can speak both Hindi and English.
  • Question 3
    1 / -0
    If n(A)=3, n(B)=4, then n(A×B×C)=36findn(C)n(A\times B\times C)=36 find \,n(C) is equal to :
    Solution
    n(A)=3n(A)=3
    n(B)=4n(B)=4
    n(A×B×C)=36n(A\times B\times C)=36
    n(3×4×C)=36n(3\times 4\times C)=36
    n(12×C)=36n(12\times C)=36
    n(C)=3\therefore n(C)=3
    So, n(A×B×C)=36n(A\times B\times C)=36
    n(3×4×3)=36n(3\times 4\times 3)=36. H.P.

  • Question 4
    1 / -0
    If A={1,2,3,4};B={2,4,6,8};C={3,4,5,8}A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\} then ABC=A\cap B\cap C=
    Solution
    A={1,2,3,4} B={2,4,6,8} C={3,4,5,8} ABC={4}. \begin{matrix} A=\left\{ { 1,2,3,4 } \right\}  \\ B=\left\{ { 2,4,6,8 } \right\}  \\ C=\left\{ { 3,4,5,8 } \right\}  \\ A\cap B\cap C=\left\{ { 4 } \right\} . \\  \end{matrix}
  • Question 5
    1 / -0
    Let A,B are two sets such that n(A)=4 and n(B)=6. Then the least possible number of elements in the power set of (AB)(A\cup B) is 
    Solution
    Given,
    n(A)=4,n(B)=6n(A)=4,n(B)=6

    Then the least number of possible elements in
    n(AB)=2n(A).2n(B)=24.26=210=1024n(A\cup B)=2^{n(A)}.2^{n(B)}=2^4.2^6=2^{10}=1024
  • Question 6
    1 / -0
    Let  A,BA , B  and  CC  be pairwise independent events with  P(C)>0P ( C ) > 0  and  P(ABC)=0P ( A \cap B \cap C ) = 0  Then,  P(ACBC/C)P \left( A ^ { C } \cap B ^ { C } / C \right) is equal to 
    Solution
    P(ACBCC )=P((ACBC)C) P(C)  =P((1A)(1B)C) P(C)  =P[(1AB+AB)C] P(C)  =P(C)P(CA)P(CB)+P(ABC) P(C)  =P(C)P(C)P(A)P(C)P(B)+P(A)P(B)P(C) P(C)  =P(C)P(C)P(A)P(C)P(B)+P(ABC) P(C)  =1P(A)P(B) =P(AC)P(B) Hence,optionAiscorrectanswer.\begin{array}{l} P\left( { \frac { { { A^{ C } }\cap { B^{ C } } } }{ C }  } \right) =\frac { { P\left( { \left( { { A^{ C } }\cap { B^{ C } } } \right) \cap C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( { \left( { 1-A } \right) \left( { 1-B } \right) \cdot C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left[ { \left( { 1-A-B+AB } \right) \cdot C } \right]  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( { CA } \right) -P\left( { CB } \right) +P\left( { ABC } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( A \right) P\left( B \right) P\left( C \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( { A\cap B\cap C } \right)  } }{ { P\left( C \right)  } }  \\ =1-P\left( A \right) -P\left( B \right)  \\ =P\left( { { A^{ C } } } \right) -P\left( B \right)  \\ Hence\, ,\, option\, A\, is\, correct\, answer. \end{array}
  • Question 7
    1 / -0
    Let S={aN,a100}\displaystyle S=\left\{a\in N,a\le100\right\} if the equation [tan2x]tanxa=0\displaystyle[{\tan}^{2}x]-\tan x-a=0 has real roots, then the number of elements SS is (when [.][.] is greatest integer function)
    Solution
    Given equation is,
    [tan2x]tanxa=0[tan^2x]-tanx-a=0
    D=b24ac=(1)24(1)(a)\therefore D=b^2-4ac=(-1)^2-4(1)(-a)

    =1+4a=1+4a
    So D must be a  odd perfect square

        1+4a=2λ+1\implies \sqrt{1+4a}=2\lambda+1

         1+4a=4λ2+1+4λ\implies  1+4a=4\lambda^2+1+4\lambda

        a=λ(λ+1)\implies a=\lambda(\lambda+1)

    For different values og=f λ\lambda we get
    a=0,2,6,12,20,30,42,56,72,90a=0,2,6,12,20,30,42,56,72,90

    Hence there are 1010 values of aa.

  • Question 8
    1 / -0
    The function f(x)f(x) satisfies the condition (x2)f(x)+2f(1x)=2(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2 for all x0x\neq 0. Then the value of f(2)f(2) is 
    Solution
    Putting x=2x=2 in (x2)f(x)+2f(1x )=2\left( x-2 \right) f\left( x \right) +2f\left( \dfrac { 1 }{ x }  \right) =2
    (22)f(2)+2f(12 )=2\left( 2-2 \right) f\left( 2 \right) +2f\left( \dfrac { 1 }{ 2 }  \right) =2
    2f(12 )=22f\left( \dfrac { 1 }{ 2 }  \right) =2
    f(12 )=1f\left( \dfrac { 1 }{ 2 }  \right) =1
  • Question 9
    1 / -0
    The value of c for which the set {(x,y)x2+y2+2x1}{(x,y)xy+c0}\{(x, y)|x^2+y^2+2x\leq 1\}\cap \{(x, y)|x-y+c\geq 0\} contains only one point in common is?
    Solution
    x2+y2+2x10x^2+y^2+2x-1\le 0           xy+c0x-y+c\ge 0
    To contain only one point in common the line should be a tangent to the circle.
    x2+y2+2x+1110\Rightarrow x^2+y^2+2x+1-1-1 \le 0
    (x+1)2+y22\Rightarrow (x+1)^2+y^2\le 2
    Centre= (1,0)(-1,0)
    Radius= 2\sqrt {2}
    (1,0)(-1,0)       xy+c0x-y+c \ge 0
    d=1+c2=2d=\left|\cfrac {-1+c}{\sqrt {2}}\right|=\sqrt {2}
    c1=2\Rightarrow |c-1|=2
    c1=2c-1=2      c1=2c-1=-2
    c=3c=3             c=1c=-1

    c=3,1\therefore c={3,-1}
  • Question 10
    1 / -0
    If A={1,2,3,4}A=\left\{1, 2, 3, 4\right\}, then the number of subsets of AA that contain the element 22 but not 33, is 
    Solution
    The subsets are be {1,2,4},{1,2},{2,4},{2}\left\{1, 2, 4\right\},\left\{1, 2\right\}, \left\{2, 4\right\}, \left\{2\right\}
    Number of subsets of AA that contain the element 22 but not 33 is 44

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now