`
Self Studies

Sets Test - 41

Result Self Studies

Sets Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
    Solution
    $$\begin{array}{l} Given \\ P\left( s \right) =\left\{ { 1,\, 2,\, 3 } \right\}  \\ P\left( s \right) =all\, subset\, of\, 5 \\ =\left\{ { \phi ,\left\{ 1 \right\} ,\left\{ 3 \right\} ,\left\{ { 1,2 } \right\} ,\left\{ { 2,3 } \right\} ,\left\{ { 3,1 } \right\} ,\left\{ { 1,2,3 } \right\}  } \right\}  \\ No.\, of\, element\, of\, 5=0\left( 5 \right) =3 \\ similarly \\ O\left( { p\left( s \right)  } \right) =8 \\ Total\, no.\, of\, one-one\, function \\ =\frac { { n! } }{ { \left( { n-m } \right) ! } } \, ,\, where\, n=o\left( { p\left( s \right)  } \right) \, and\, m=o\left( 5 \right)  \\ =\frac { { 8! } }{ { \left( { 8-3 } \right) ! } } =\frac { { 8! } }{ { 5! } }  \\ =336\, \,  \\ No.\, of\, one-one\, function\, is\, 336 \\ Hence,\, \, option\, \, A\, \, is\, correct, \end{array}$$

  • Question 2
    1 / -0
    In a group of 800 people, 550 can speak Hindi and 450 can speak English. How many can speak both Hindi and English ?
    Solution
    Let H denote the set of people speaking Hindi and E denote the set of people speaking English. We are given :
    $$n(H)=550, n(E)=450, n(H\cup E)=800$$
    Now,
    $$n(H\cup E)=n(H)+n(E)-n(H\cap E)$$
    $$n(H \cap E)=550+450-800=200$$
    Hence, 200 persons can speak both Hindi and English.
  • Question 3
    1 / -0
    If n(A)=3, n(B)=4, then $$n(A\times B\times C)=36 find \,n(C)$$ is equal to :
    Solution
    $$n(A)=3$$
    $$n(B)=4$$
    $$n(A\times B\times C)=36$$
    $$n(3\times 4\times C)=36$$
    $$n(12\times C)=36$$
    $$\therefore n(C)=3$$
    So, $$n(A\times B\times C)=36$$
    $$n(3\times 4\times 3)=36$$. H.P.

  • Question 4
    1 / -0
    If $$A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\}$$ then $$A\cap B\cap C=$$
    Solution
    $$\begin{matrix} A=\left\{ { 1,2,3,4 } \right\}  \\ B=\left\{ { 2,4,6,8 } \right\}  \\ C=\left\{ { 3,4,5,8 } \right\}  \\ A\cap B\cap C=\left\{ { 4 } \right\} . \\  \end{matrix}$$
  • Question 5
    1 / -0
    Let A,B are two sets such that n(A)=4 and n(B)=6. Then the least possible number of elements in the power set of $$(A\cup B)$$ is 
    Solution
    Given,
    $$n(A)=4,n(B)=6$$

    Then the least number of possible elements in
    $$n(A\cup B)=2^{n(A)}.2^{n(B)}=2^4.2^6=2^{10}=1024$$
  • Question 6
    1 / -0
    Let  $$A , B$$  and  $$C$$  be pairwise independent events with  $$P ( C ) > 0$$  and  $$P ( A \cap B \cap C ) = 0$$  Then,  $$P \left( A ^ { C } \cap B ^ { C } / C \right)$$ is equal to 
    Solution
    $$\begin{array}{l} P\left( { \frac { { { A^{ C } }\cap { B^{ C } } } }{ C }  } \right) =\frac { { P\left( { \left( { { A^{ C } }\cap { B^{ C } } } \right) \cap C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( { \left( { 1-A } \right) \left( { 1-B } \right) \cdot C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left[ { \left( { 1-A-B+AB } \right) \cdot C } \right]  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( { CA } \right) -P\left( { CB } \right) +P\left( { ABC } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( A \right) P\left( B \right) P\left( C \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( { A\cap B\cap C } \right)  } }{ { P\left( C \right)  } }  \\ =1-P\left( A \right) -P\left( B \right)  \\ =P\left( { { A^{ C } } } \right) -P\left( B \right)  \\ Hence\, ,\, option\, A\, is\, correct\, answer. \end{array}$$
  • Question 7
    1 / -0
    Let $$\displaystyle S=\left\{a\in N,a\le100\right\}$$ if the equation $$\displaystyle[{\tan}^{2}x]-\tan x-a=0$$ has real roots, then the number of elements $$S$$ is (when $$[.]$$ is greatest integer function)
    Solution
    Given equation is,
    $$[tan^2x]-tanx-a=0$$
    $$\therefore D=b^2-4ac=(-1)^2-4(1)(-a)$$

    $$=1+4a$$
    So D must be a  odd perfect square

    $$\implies \sqrt{1+4a}=2\lambda+1$$

    $$\implies  1+4a=4\lambda^2+1+4\lambda$$

    $$\implies a=\lambda(\lambda+1)$$

    For different values og=f $$\lambda$$ we get
    $$a=0,2,6,12,20,30,42,56,72,90$$

    Hence there are $$10 $$ values of $$a$$.

  • Question 8
    1 / -0
    The function $$f(x)$$ satisfies the condition $$(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2$$ for all $$x\neq 0$$. Then the value of $$f(2)$$ is 
    Solution
    Putting $$x=2$$ in $$\left( x-2 \right) f\left( x \right) +2f\left( \dfrac { 1 }{ x }  \right) =2$$
    $$\left( 2-2 \right) f\left( 2 \right) +2f\left( \dfrac { 1 }{ 2 }  \right) =2$$
    $$2f\left( \dfrac { 1 }{ 2 }  \right) =2$$
    $$f\left( \dfrac { 1 }{ 2 }  \right) =1$$
  • Question 9
    1 / -0
    The value of c for which the set $$\{(x, y)|x^2+y^2+2x\leq 1\}\cap \{(x, y)|x-y+c\geq 0\}$$ contains only one point in common is?
    Solution
    $$x^2+y^2+2x-1\le 0$$           $$x-y+c\ge 0$$
    To contain only one point in common the line should be a tangent to the circle.
    $$\Rightarrow x^2+y^2+2x+1-1-1 \le 0$$
    $$\Rightarrow (x+1)^2+y^2\le 2$$
    Centre= $$(-1,0)$$
    Radius= $$\sqrt {2}$$
    $$(-1,0)$$       $$x-y+c \ge 0$$
    $$d=\left|\cfrac {-1+c}{\sqrt {2}}\right|=\sqrt {2}$$
    $$\Rightarrow |c-1|=2$$
    $$c-1=2$$      $$c-1=-2$$
    $$c=3$$             $$c=-1$$

    $$\therefore c={3,-1}$$
  • Question 10
    1 / -0
    If $$A=\left\{1, 2, 3, 4\right\}$$, then the number of subsets of $$A$$ that contain the element $$2$$ but not $$3$$, is 
    Solution
    The subsets are be $$\left\{1, 2, 4\right\},\left\{1, 2\right\}, \left\{2, 4\right\}, \left\{2\right\}$$
    Number of subsets of $$A$$ that contain the element $$2$$ but not $$3$$ is $$4$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now