Self Studies

Straight Lines Test 0

Result Self Studies

Straight Lines Test 0
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$( 4, 3)$$ and $$(-4, 3)$$ are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
    Solution
    Let the given equilateral triangle be $$ABC$$ with vertices 
    $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 4,3 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -4,3 \right)  \&  C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( x,y \right)$$ .

    Since the ordinates of $$A$$ &  $$B$$ are same, 
    $$\therefore AB\parallel X-$$axis. 
    So $$AB=$$ Difference of the abscissae $$=4-(-4) $$ units = $$8$$ units. 
    i.e $$AB=BC=AC=8$$ units. 

    The abscissae of $$A$$ & $$B$$ are equal but opposite in sign. 

    $$\therefore  A \&  B$$ are equidistant from the $$Y-$$axis. 
    $$\Delta$$ ABC is equilateral. 
    So, in this case, $$C$$ lies on the $$Y-$$axis.  
    $$C$$ may lie on the either side of $$AB$$. 
    But the origin lies in the interior of the $$\Delta$$.
    So $$C$$ will lie downwards $$AB$$ & on the $$Y-$$axis. i.e the co-ordinates of $$C$$ is $$\left( 0,y \right) .$$

    Applying the distance formula 
    $$d=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right)  }^{ 2 } }  $$

    $$BC=\sqrt { { \left( 0+4 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 } } =\sqrt { { y }^{ 2 }-6y+25 } =8 \Rightarrow { y }^{ 2 }-6y-39=0$$ and

    $$\Rightarrow y=\left( 3+4\sqrt { 3 }  \right)  $$ which is positive & we reject it.
    Or $$y=\left( 3-4\sqrt { 3 }  \right)$$  which is negative &  we accept it.
    $$\therefore$$  The co-ordinates of $$C$$ are $$\left( 0, 3-4\sqrt { 3 }  \right)$$
  • Question 2
    1 / -0
    If the distance between the   points $$(k, - 1)$$ and (3, 2) is  5, then the value of k is
    Solution
    Let the points be $$A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =(k,-1)\quad \& \quad B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =(3,2)\\ $$ 
    and distance $$=\quad d=5\\ Then\quad d=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 3-k \right)  }^{ 2 }+{ \left( 2+1 \right)  }^{ 2 } } =5\\ \Longrightarrow { k }^{ 2 }-6k-7=0\\ \Longrightarrow \left( k-7 \right) \left( k+1 \right) =0\quad \\ \therefore \quad k=7,\quad k=-1\\ $$
  • Question 3
    1 / -0
    What points on the x-axis are at a distance of 5 units from the point (5, - 4) ?
    Solution
    $$ Let\quad the\quad point\quad be\quad A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =(p,0)\quad \left[ since\quad it\quad is\quad on\quad the\quad X-axis \right] \quad \& \quad at\quad a\quad distance\quad of\\ d=5\quad units\quad from\quad the\quad point\quad B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =(5,-4).\quad \quad \quad \quad Now\\ the\quad distance\quad between\quad two\quad points\quad \left( { x }_{ 1 },{ y }_{ 1 } \right) \quad and\quad \left( { x }_{ 2 },{ y }_{ 2 } \right) \quad is\quad d=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } \\ \therefore \quad \sqrt { { \left( 5-p \right)  }^{ 2 }+{ \left( -4-0 \right)  }^{ 2 } } =5\\ \Longrightarrow { p }^{ 2 }-10p+16=0\\ \Longrightarrow \left( p-8 \right) \left( p-2 \right) =0\\ \therefore \quad p=8\quad or\quad 2\\ So\quad the\quad points\quad are\quad \left( 8,0 \right) \quad \& \left( 2,0 \right) \\ Ans-\quad Option\quad A\\  $$
  • Question 4
    1 / -0
    If A is a point on the y-axis  whose ordinate is 5 and B is the  point (-3, 1), then the length of  AB is
    Solution
    $$ The\quad point\quad A\quad is\quad on\quad Y-axis.\quad \therefore \quad its\quad abscissa=0.\quad So\quad A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,5 \right) \\ and\quad B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -3,1 \right) \quad \left[ given \right] \\ \therefore \quad AB=\sqrt { ({ { x }_{ 2 }-{ x }_{ 1 }) }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( -3-0 \right)  }^{ 2 }+{ \left( 1-5 \right)  }^{ 2 } } =\sqrt { 25 } =5\quad units.\\ Ans\quad Option\quad B\quad  $$
  • Question 5
    1 / -0
    The angle made by the line $$\sqrt 3x-y+3=0$$ with the positive direction of X-axis is
    Solution
    We have in $$Eq^{n}  y= mx+c$$ the slope of line as m and $$m= \tan\theta , \theta$$ is the angle made by (+ve)  in X-axis 
    Hence,  $$y = \sqrt{3}x+ 3$$
    Here $$m= \sqrt{3} =\tan\theta$$
    $$\theta=60^{o}$$

  • Question 6
    1 / -0
    If the two vertices of an  equilateral triangle be (0, 0) and  (3,$$\sqrt{3}$$ ), then the co-ordinates of  third vertex are
    Solution
    $$ Let\quad the\quad points\quad be\quad P=(p,q),\quad Q=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,0 \right) and\quad R=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 3,\sqrt { 3 }  \right) .\\ \because \quad They\quad are\quad vertices\quad of\quad an\quad equilateral\quad \Delta ,\quad \therefore \quad PQ=QR=PR\\ So\quad PQ=\sqrt { { \left( { x }_{ 1 }-{ p } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-{ q } \right)  }^{ 2 } } =\sqrt { { \left( 0-{ p } \right)  }^{ 2 }+{ \left( 0-{ q } \right)  }^{ 2 } } =\sqrt { { p }^{ 2 }+{ q }^{ 2 } } ,\\ QR=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ { y }_{ 1 } } \right)  }^{ 2 } } =\sqrt { { \left( 3-0 \right)  }^{ 2 }+{ \left( \sqrt { 3 } -{ 0 } \right)  }^{ 2 } } =2\sqrt { 3 } and\\ PR=\sqrt { { \left( { x }_{ 2 }-p \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ q } \right)  }^{ 2 } } =\sqrt { { \left( 3-p \right)  }^{ 2 }+{ \left( \sqrt { 3 } -{ q } \right)  }^{ 2 } } =\sqrt { { p }^{ 2+ }+{ q }^{ 2 }-6p-2\sqrt { 3 } q+12 } \\ \therefore \quad PQ=QR\Longrightarrow \sqrt { { p }^{ 2 }+{ q }^{ 2 } } =2\sqrt { 3 } \Longrightarrow { p }^{ 2 }+{ q }^{ 2 }=12........(i)\\ Again\quad QR=PR\Longrightarrow \sqrt { { \left( 3-p \right)  }^{ 2 }+{ \left( \sqrt { 3 } -{ q } \right)  }^{ 2 } } =2\sqrt { 3 } \Longrightarrow { p }^{ 2 }+{ q }^{ 2 }-6p-2\sqrt { 3 } q+12=12\\ { p }^{ 2 }+{ q }^{ 2 }-6p-2\sqrt { 3 } q=0............(ii)\\ Substituting\quad { p }^{ 2 }+{ q }^{ 2 }=12\quad from\quad (i)\quad we\quad get\quad 3p+\sqrt { 3 } q=6\Longrightarrow q=\frac { 6-3p }{ \sqrt { 3 }  } ........(iii)\\ Putting\quad this\quad value\quad of\quad q\quad in(i)\quad we\quad have\quad { p }^{ 2 }+{ \left( \frac { 6-3p }{ \sqrt { 3 }  }  \right)  }^{ 2 }=12\\ \Longrightarrow 12{ p }^{ 2 }-36p=0\Longrightarrow p=\left( 0,3 \right) \\ Putting\quad these\quad values\quad of\quad p\quad in\quad (iii)\quad we\quad get\quad q=\left( 2\sqrt { 3 } ,-\sqrt { 3 }  \right) \\ \therefore \quad P=\left( 0,2\sqrt { 3 }  \right) ,\left( 3,-\sqrt { 3 }  \right) \\ Ans\quad Option\quad A $$
  • Question 7
    1 / -0
    The centre of the circle  passing through the  points $$(5,7) (6,6)$$ and $$(2,  -2)$$ is
    Solution
    Let the points on the circumference be $$P=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 5,7 \right) , Q=\left( { x }_{ 2 },{ y }_{ 2 } \right) = (6,6), R=\left( { x }_{ 3 },{ y }_{ 3 } \right)$$ $$=\left( 2,-2 \right)$$  
    And the centre be $$C=\left( h,k \right)$$
    $$\therefore  PC={ d }_{ 1 }=\sqrt { { (h-{ { x }_{ 1 }) } }^{ 2 }+{ (k-{ y }_{ 1 }) }^{ 2 } } =\sqrt { { (h-{ 5) } }^{ 2 }+{ (k-7) }^{ 2 } }$$
    Similarly, $$QC={ d }_{ 2 }=\sqrt { { (h-{ { x }_{ 2 }) } }^{ 2 }+{ (k-{ y }_{ 2 }) }^{ 2 } } =\sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } }$$ 
    And, $$RC={ d }_{ 3 }=\sqrt { { (h-{ { x }_{ 3 }) } }^{ 2 }+{ (k-{ y }_{ 3 }) }^{ 2 } } =\sqrt { { (h-{ 2) } }^{ 2 }+{ (k+2) }^{ 2 } }$$
    Since $$PC, QC, RC$$ are radii of the same circle, therefore they are equal to each other.
    So, $${ d }_{ 1 }={ d }_{ 2 }$$
    $$\Rightarrow \sqrt { { (h-{ 5) } }^{ 2 }+{ (k-7) }^{ 2 } } =\sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } } $$
    $$ \Rightarrow h-k+1=0$$      .....(i)
    Again, $${ d }_{ 2 }={ d }_{ 3 }$$
    $$\Rightarrow \sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } } =\sqrt { { (h-{ 2) } }^{ 2 }+{ (k+2) }^{ 2 } }  $$
    $$ \Rightarrow h+2k-8=0$$      ....(ii).
    Subtracting (i) from (ii), we have
    $$3k-9=0\Rightarrow k=3$$
    $$ \therefore$$  Substituting $$k=3$$ in (i), $$h=2$$
    $$\therefore  C=(h,k)=(2,3)$$ 
  • Question 8
    1 / -0
    Area of the triangle formed by the points P(-1.5, 3), Q(6, -2) and R(-3, 4) is 0.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Given $$P(-1.5, 3), Q(6, -2)$$ and $$R(-3, 4)$$
    Therefore, area is given by
    $$= \frac{1}{2}\times[(-1.5)(-2-4) + 6(4-3)+(-3)(3+2)]$$
    $$= \frac{1}{2}\times(9 +6-15)$$
     $$= 0$$
  • Question 9
    1 / -0
    If the distance between (8, 0)  and A is 7, then coordinates of  the point A can not be
    Solution
    $$ Let\  the\  points\  be\  A=\left( { x }_{ 1 },{ y }_{ 1 } \right) ,\  \& \  B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 8,0 \right) .\  Then\\ d=AB=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } .\\ Let\  us\  investigate\  for\  each\  option.\\ Option\  A\longrightarrow Let\  \left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 8,-7 \right) \therefore \  AB=\sqrt { { \left( 8-8 \right)  }^{ 2 }+{ \left( 0+7 \right)  }^{ 2 } } =7\rightarrow True\\ Option\  B\longrightarrow Let\  \left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 8,7 \right) \therefore \  AB=\sqrt { { \left( 8-8 \right)  }^{ 2 }+{ \left( 0-7 \right)  }^{ 2 } } =7\rightarrow True\\ Option\  C\longrightarrow Let\  \left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 1,0 \right) \therefore \  AB=\sqrt { { \left( 8-1 \right)  }^{ 2 }+{ \left( 0-0 \right)  }^{ 2 } } =7\rightarrow True\\ Option\  D\longrightarrow Let\  \left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,-8 \right) \therefore \  AB=\sqrt { { \left( 8-0 \right)  }^{ 2 }+{ \left( 0+8 \right)  }^{ 2 } } =8\sqrt { 2 } \rightarrow Not\  true\\ Ans-\  Option\  D\\  $$
  • Question 10
    1 / -0
    The angle made by the line whose intercepts are 3 and $$3\sqrt 3$$ on X and Y axis respectively with X-axis is .....
    Solution
    Any straight line which makes an angle $$\alpha$$ with the positive direction of $$X-$$axis will have their slope as 
    $$\tan \alpha=-\dfrac{b}{a}$$, where $$a$$ and $$b$$ are the intercepts w.r.t. $$X$$ and $$Y$$ axes
    Here, $$a=3, b=3\sqrt{3}$$
    $$\implies \tan \alpha =-\dfrac{3\sqrt{3}}{3}=-\sqrt{3}$$
    $$\implies \alpha=\tan^{-1}(-\sqrt{3})$$
    $$\therefore \alpha = 120^{o}$$
    Hence, option B is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now