Let the points on the circumference be $$P=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 5,7 \right) , Q=\left( { x }_{ 2 },{ y }_{ 2 } \right) = (6,6), R=\left( { x }_{ 3 },{ y }_{ 3 } \right)$$ $$=\left( 2,-2 \right)$$
And the centre be $$C=\left( h,k \right)$$
$$\therefore PC={ d }_{ 1 }=\sqrt { { (h-{ { x }_{ 1 }) } }^{ 2 }+{ (k-{ y }_{ 1 }) }^{ 2 } } =\sqrt { { (h-{ 5) } }^{ 2 }+{ (k-7) }^{ 2 } }$$
Similarly, $$QC={ d }_{ 2 }=\sqrt { { (h-{ { x }_{ 2 }) } }^{ 2 }+{ (k-{ y }_{ 2 }) }^{ 2 } } =\sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } }$$
And, $$RC={ d }_{ 3 }=\sqrt { { (h-{ { x }_{ 3 }) } }^{ 2 }+{ (k-{ y }_{ 3 }) }^{ 2 } } =\sqrt { { (h-{ 2) } }^{ 2 }+{ (k+2) }^{ 2 } }$$
Since $$PC, QC, RC$$ are radii of the same circle, therefore they are equal to each other.
So, $${ d }_{ 1 }={ d }_{ 2 }$$
$$\Rightarrow \sqrt { { (h-{ 5) } }^{ 2 }+{ (k-7) }^{ 2 } } =\sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } } $$
$$ \Rightarrow h-k+1=0$$ .....(i)
Again, $${ d }_{ 2 }={ d }_{ 3 }$$
$$\Rightarrow \sqrt { { (h-{ 6) } }^{ 2 }+{ (k-6) }^{ 2 } } =\sqrt { { (h-{ 2) } }^{ 2 }+{ (k+2) }^{ 2 } } $$
$$ \Rightarrow h+2k-8=0$$ ....(ii).
Subtracting (i) from (ii), we have
$$3k-9=0\Rightarrow k=3$$
$$ \therefore$$ Substituting $$k=3$$ in (i), $$h=2$$
$$\therefore C=(h,k)=(2,3)$$