Self Studies

Straight Lines Test 10

Result Self Studies

Straight Lines Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If A(2, 2), B(-4, -4), C(5, -8) are the vertices of any triangle the length of median passes through C will be
    Solution
    A median of a triangle is a line segment that joins the vertex of a triangle to

    the midpoint of the opposite side.

    Median through C will pass through midpoint of AB.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y

    }_{ 2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{

    x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,

    mid point of AB $$ = D = \left( \dfrac { 2-4 }{ 2 } ,\dfrac { 2-4 }{ 2 } 

    \right) \quad =\quad (-1,-1) $$

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$


    Distance between the points C$$ (5,-8) $$ and D $$ (-1,-1) = \sqrt { \left( -1-5

    \right) ^{ 2 }+\left( -1 +8 \right) ^{ 2 } } = \sqrt { 36 + 49} = \sqrt {85 }

    $$


  • Question 2
    1 / -0
    If the distance between the points (a, 2) and (3, 4) be 8 then a =
    Solution

    Distance

    between two points $$ \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( {

    x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt {

    \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 }

    \right) ^{ 2 } } $$

    Distance between $$ (a,2) $$ and $$ (3,4) =  8

    $$

    $$ \sqrt { \left( 3-a \right) ^{ 2 }+\left( 4-2 \right) ^{ 2 } } = 8 $$

    $$ \sqrt { 9 + { a }^{ 2 } - 6a + 4 } = 8 $$

    $$ \sqrt { { a }^{ 2 } - 6a + 13 } = 8 $$

    $$ { a }^{ 2 }- 6a + 13 = 64 $$

    $$ { a }^{ 2 } - 6a - 51  = 0 $$

    $$ a=  \dfrac { -(-6)\pm \sqrt { \left( { -6 }^{ 2 } \right) -4(1)(-51) }  }{ 2(1) } $$

    $$ => a = \dfrac {6 \pm \sqrt{36 + 204}}{2} $$
    $$ => a = 3 \pm 2\sqrt {15} $$

  • Question 3
    1 / -0
    If the area of a triangle is $$68 $$ sq. units and the vertices are $$(6, 7), (-4, 1)$$ and $$(a, -9) $$ then the value of $$a$$ is 
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is:
    $$A= \left| \dfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (6,7) $$ ; $$({ x }_{ 2

    },{ y }_{ 2 }) = (-4,1) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (a,-9)$$ in the formula for area, we get:

    Area of triangle $$ = \left| \dfrac {  (6)(1+9)+(-4)(-9-7) + a(7-1) }{ 2 } 

    \right|  = 68 $$
    $$ \left| \dfrac { 60 + 64 + 6a }{ 2 }  \right|  = 68 $$
    $$ \dfrac{124 + 6a}{2}  = 68 $$
    $$  124 + 6a = 136 $$
    $$  6a = 12 $$
    $$ \implies a = 2 $$

  • Question 4
    1 / -0
    The co-ordinates of the vertices of a rectangle are $$(0, 0), (4, 0), (4, 3)$$ and $$(0, 3)$$. The length of its diagonal is
    Solution
    Let the points be $$ A(0,0) B(4,0), C(4,3), D(0,3) $$

    So, the length of the diagonal will be distance between A and C.

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Hence, Length of diagonal AC $$ = \sqrt { \left( 4-0 \right) ^{ 2 }+\left(3 -0 \right) ^{ 2 } } = \sqrt { 16 + 9 } = \sqrt { 25 } = 5 $$

  • Question 5
    1 / -0
    The straight lines $$x+y-4=0, 3x+y-4 =0, x+3y-4 =0$$ forms a triangle which is
    Solution
    Straight lines $$x+y -4 = 0, 3x+y-4=0, x+3y-4=0$$ form a triangle.
    Point of interaction of line $$x+y-4=0$$ and $$3x + y - 4= 0$$ can be calculated by solving and we will get point of interaction $$A = (2, -2) $$
    Point of interaction of line $$3x+y-4=0$$ and $$x +3 y - 4= 0$$ can be calculated by solving and we will get point of interaction $$B = (1, 1) $$
    Point of interaction of line $$x+3y-4=0$$ and $$x + y - 4= 0$$ can be calculated by solving and we will get point of interaction $$c = (-2, 2) $$
    Hence we get a triangle $$\triangle ABC$$
    Using distance formula, we can calculate length of sides $$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$ between points $$(x_1, y_1)$$ and$$(x_2,y_2)$$
    length of AB $$= \sqrt{(1-2)^2 + (1+2)^2} \\ = \sqrt{1+9} \\ = \sqrt{10}$$units
    length of BC $$= \sqrt{(-2-1)^2 + (2-1)^2} \\ = \sqrt{9+1} \\ = \sqrt{10}$$units
    length of CA $$= \sqrt{(-2-2)^2 + (2+2)^2} \\ = \sqrt{16+16} \\ = \sqrt{32}$$units
    As we can observe, AB=BC, the triangle is isosceles.


  • Question 6
    1 / -0
    The straight lines $$x + y - 4 =0,\ 3x + y - 4 =0$$, and $$x + 3y -4 = 0$$ form a triangle which is :
    Solution

  • Question 7
    1 / -0
    If the distance between $$(8, 0)$$ and A is $$7$$, then co-ordinates of the point A can not be
    Solution
    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    We can see that distance between $$ (8,0) $$ and $$(0,-8) = { \left( 0-8 \right) ^{ 2 }+\left(-8-0 \right) ^{ 2 } } = \sqrt { 64 + 64 } = 8\sqrt { 2} $$.
    Hence, $$ A $$ cannot be $$ (0,-8) $$

  • Question 8
    1 / -0
    A circle that has its center its center at the origin and passes through (-8,-6) will also pass through the point: 
    Solution
    Here it is given that the circle with center ar
    origin passes through the point (-8, -6)
    The distance from origin (0, 0) to point (-8, -6) will be
    the radius of the given circle
    So by distance formula
    Radius of circle $$\displaystyle =\sqrt{\left ( -8-0 \right )^{2}+\left ( -6-0 \right )^{2}}$$
    $$\displaystyle =\sqrt{8^{2}+6^{2}}=\sqrt{64+34}=\sqrt{100}=10$$
    Now any point that lies on the circle will be ar
    the same distance as that of radius
    Hence check the options whether any point has
    the same distance from the origin as radius of
    the circle
    Option (D) gives
    $$\displaystyle \sqrt{\left ( 9-0 \right )^{2}+\left ( \sqrt{19}-0 \right )^{2}}=\sqrt{81+19}=\sqrt{100}=10$$
    Hence the distance of point $$\displaystyle \left ( 9,\sqrt{19} \right )$$ from the
    origin is same as that of radius equal to 10
    The circle given passes through the point $$\displaystyle \left ( 9,\sqrt{19} \right )$$
  • Question 9
    1 / -0
    Do the points $$(-2, 5), (3, -4)$$ and $$(7, 10)$$ represent  the vertices of a right triangle?
    Solution

    Let $$ A (2,5), B (3,-4) $$ and $$ C (7,10) $$

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y}_{ 1 } \right) ^{ 2 } } $$


    Distance between the points A and B $$ AB = \sqrt { \left( 3+2 \right) ^{ 2 }+\left( -4-5\right) ^{ 2 } } = \sqrt { 25 + 81 } = \sqrt { 106 } $$


    Distance between the points B and C $$ BC = \sqrt { \left(7-3 \right) ^{ 2 }+\left( 10+4\right) ^{ 2 } } = \sqrt { 16 + 196 } = \sqrt { 212 } $$


    Distance between the points A and C $$AC = \sqrt { \left(7+2 \right) ^{ 2 }+\left(10-5\right) ^{ 2 } } = \sqrt { 81 + 25 } = \sqrt { 106 } $$

    Since, $$ {(\sqrt { 212}) }^{2} = {(\sqrt { 106 }) }^{2} + {(\sqrt { 106 })}^{2} $$, the triangle is a right angled triangle.

  • Question 10
    1 / -0
    Find a point on x-axis which is equidistant from $$A(7, 6)\ and\ B(-3, 4)$$
    Solution

    Let the point on the x-axis be $$ (x,0) $$

    Distance between $$ (x,0) $$ and $$ (7,6) = \sqrt { \left( 7-x \right) ^{ 2

    }+\left( 6 - 0 \right) ^{ 2 } } = \sqrt { { 7}^{ 2 }+ { x }^{ 2 } - 14x + 36 }

    = \sqrt { { x }^{ 2 } - 14x + 85 } $$

    Distance between $$ (x,0) $$ and $$ (-3,4) = \sqrt { \left( -3-x \right) ^{ 2

    }+\left( 4 - 0 \right) ^{ 2 } } = \sqrt { { 3}^{ 2 }+ { x }^{ 2 } + 6x + 16 } =

    \sqrt { { x }^{ 2 } + 6x + 25 } $$

    As the point $$ (x,0) $$ is equidistant from the two points, both the distances

    calculated are equal.

    $$ \sqrt { { x }^{ 2 } - 14x + 85 } = \sqrt { { x }^{ 2 } + 6x + 25 } $$

    $$ => { x }^{ 2 } - 14x + 85  = { x }^{ 2 } + 6x + 25  $$

    $$ 85 - 25 = 6x  + 14x $$

    $$ 60 = 20x $$

    $$ x = 3 $$

    Thus, the point is $$ (3,0) $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now