Self Studies

Straight Lines Test 11

Result Self Studies

Straight Lines Test 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If mid point of the line segment joining (2a,4) and (-2,3b) is (1,2a+1), then the values of a and b are given by 
    Solution
    Since $$(1,2a+1)$$ is the midpoint of line segment that means it divides line in ratio $$1:1$$
    Now using section formula, we have
    $$1=\frac{2a-2}{2}$$ and $$(2a+1) =\frac{4+3b}{2}$$
    On solving we get
    $$a=2\;\;and \;\; b=2$$
  • Question 2
    1 / -0
    $$(0, 0), (0, 3)$$ and $$(3, 0)$$ form ___________.
    Solution
    Let the vertices be $$A(0,0)$$, $$B(0,3)$$ and $$C(3,0)$$. Now the measure of sides are
    $$AB=3$$ units
    $$BC=\sqrt{(0-3)^{2}+(3-0)^{2}}=\sqrt{3^{2}+3^{2}}=3\sqrt{2}units$$.
    $$AC=3$$ units.
    Hence, we can observe that $$AB^{2}+AC^{2}=3^2+3^{2}=2(3^{2})=BC^{2}$$. 
    Thus, it follows Pythagoras theorem with BC being the hyptenuse and AC and AB being the perpendicular sides. 
    Hence, the above vertices form a right angled triangle.
  • Question 3
    1 / -0
    Find the point on the y-axis which is equidistant from $$A(3, -6)$$ and $$B(-2, 5)$$.
    Solution
    Let the point be $$(x,y)$$.
    Distance formula: $$d^2=(x_1-x_2)^2+(y_1-y_2)^2$$
    Now equate the distances of the points $$A(3,-6)$$ and $$B(-2,5)$$ from the point $$(x,y)$$.
    $$(x-3)^2+(y+6)^2=(x+2)^2+(y-5)^2$$
    The $$x-$$coordinate of a point on $$y-$$axis is $$0$$.
    $$(0-3)^2+(y+6)^2=(0+2)^2+(y-5)^2$$
    $$9+y^2+12y+36=4+y^2-10y+25$$
    $$12y+10y=29-45$$
    $$22y=-16$$
    $$y=-\dfrac { 8 }{ 11 }$$ 
    Hence, the point on the y-axis is $$\left( 0,-\dfrac { 8 }{ 11 }  \right)$$. 
  • Question 4
    1 / -0
    $$L, M$$ and $$N$$ are the midpoints of the sides $$BC, CA$$ and $$AB$$ respectively of triangle $$ABC$$. If the vertices are $$A(3,-4), B(5,-2)$$ and $$C(1,3)$$ the area of $$\displaystyle \triangle LMN$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$

    Let $$(x_1,y_1)$$ $$=(3,-4)$$, $$(x_2,y_2)$$ $$=(5,-2)$$ and $$(x_3,y_3)$$ $$=(1,3)$$

    Area of $$\displaystyle \Delta ABC=\dfrac{1}{2}\left [ 3\left ( -2-3 \right )+5\left ( 3+4 \right )+1\left ( -4+2 \right ) \right ]$$ 

    $$=\dfrac{1}{2}\left ( -15+35-2 \right )$$

    $$=9$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta LMN=\frac{1}{4}\times 9=2.25$$ square units.
  • Question 5
    1 / -0
    Find the perimeter of the triangle formed by the points $$(3, 5), (4, 8)$$ and $$(5, 6)$$.
    Solution
    To find the perimeter of the triangle formed by the points $$A(3,5)$$, $$B(4,8)$$ and $$C(5,6)$$, we must find the distance between these three points that can be determined as follows:

    $$AB=\sqrt { { (4-3) }^{ 2 }+{ (8-5) }^{ 2 } } =\sqrt { { 1 }^{ 2 }+{ 3 }^{ 2 } } =\sqrt { 1+9 } =\sqrt { 10 }$$ 

    $$BC=\sqrt { { (5-4) }^{ 2 }+{ (6-8) }^{ 2 } } =\sqrt { { 1 }^{ 2 }+{ 2 }^{ 2 } } =\sqrt { 1+4 } =\sqrt { 5 }$$

    $$AC=\sqrt { { (5-3) }^{ 2 }+{ (6-5) }^{ 2 } } =\sqrt { { 2 }^{ 2 }+{ 1 }^{ 2 } } =\sqrt { 4+1 } =\sqrt { 5 }$$

    Now the perimeter is $$AB+BC+AC$$ that is 

    $$AB+BC+AC=\sqrt { 10 } +\sqrt { 5 } +\sqrt { 5 } =\sqrt { 10 } +2\sqrt { 5 } =\sqrt { 5 } (2+\sqrt { 2 } )$$

    Hence the perimeter is $$\sqrt { 5 } (2+\sqrt { 2 } )$$.
  • Question 6
    1 / -0
    Which of the following points is equidistant from $$(3,2)$$ and $$(-5,-2)$$?
    Solution
    Let the coordinates of the required point be $$x$$ and $$y$$.
    Then application of distance formula gives us
    $$(x-3)^{2}+(y-2)^{2}=(x+5)^{2}+(y+2)^{2}$$
    $$(x+5)^{2}-(x-3)^{2}+(y+2)^{2}-(y-2)^{2}=0$$
    $$(2x+2)(8)+(2y)(4)=0$$
    Or  $$(x+1)(16)+8y=0$$ or $$2x+y+2=0$$. 
    Hence, the locus of all those points which are equidistant from the points $$(3,2)$$ and $$(-5,-2)$$ is $$2x+y+2=0$$
    Now the point lying on the $$y-axis$$ and is equidistant from the above two points will be $$(2x+y+2=0)_{x=0}$$ or $$y+2=0$$ or $$y=-2$$. 
    Hence the point $$(0,-2)$$ is point which lies on the y-axis and is equidistant from the given two points. 
    Conversely, from the above given options, only option B satisfies the locus $$2x+y+2=0$$.
  • Question 7
    1 / -0
    The midpoints of the sides of triangle $$ABC$$ are $$ (-1,-2), (6,1)$$ and $$(3,5) $$. The area of $$\displaystyle \triangle ABC$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of triangle formed with midpoints
    $$\displaystyle =\frac{1}{2}\left [ -1\left ( 1-5 \right )+6\left ( 5+2 \right )+3\left ( -2-1 \right ) \right ]$$
    $$\displaystyle =\frac{37}{2}$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta ABC=4\times \frac{37}{2}=74$$ square units.  
    $$[\because$$ Area of triangle formed by joining mid-points of the sides of given triangle is $$\left(\dfrac{1}{4}\right)^{th}$$ of the area of original triangle $$]$$
  • Question 8
    1 / -0
    Which of the following points are the vertices of an equilateral triangle?
    Solution
    Consider option A;
    Let $$A=(a,a)$$ ,$$B=(-a,-a)$$ and $$C=(2a,a)$$. Then the distance between A and B is $$AB=2a\sqrt{2}$$. Similarly $$BC=\sqrt{13}a$$. Hence we can see that the sides are not equal in length. Hence these are not the vertices of an equilateral triangle.

    Consider B
    Let $$A=(a,a)$$ ,$$B=(-a,-a)$$ and $$C=(-a\sqrt{3},a\sqrt{3})$$. Then the distance between A and B is $$AB=2a\sqrt{2}$$. Similarly $$BC=2\sqrt{2}a$$ and  $$AC=2\sqrt{2}a$$. Hence we can see that the sides are equal in length. Also $$(a,a)$$ and $$(-a,-a)$$ lie on $$y=x$$ where as $$(-a\sqrt{3},a\sqrt{3})$$ lies on $$y=-x$$. Hence the points are non-collinear. Hence these are the vertices of an equilateral triangle.
  • Question 9
    1 / -0
    The point on the x-axis which is equidistant from the points $$(5,4)$$ and $$(-2,3)$$ is
    Solution
    Let the point of x-axis be $$P(x, 0)\equiv(x_1,y_1)$$

    Given: $$A(5,4)\equiv(x_2,y_2)$$ and $$B(-2, 3)$$ are equidistant from $$P$$

    That is $$PA = PB$$

    Hence $$PA^2 = PB^2$$ ................. (1)

     Distance between two points is $$\sqrt { { ({ x }_{ 2 } }-{ x }_{ 1 })^{ 2 }+{ ({ y }_{ 2 } }-{ y }_{ 1 })^{ 2 } }$$

    $$PA=\sqrt { (5-x)^{ 2 }+(4-0)^{ 2 } } =\sqrt { x^{ 2 }+25-10x+16 } =\sqrt { x^{ 2 }-10x+41 }$$ 

    Therefore, $$PA^{ 2 }=x^{ 2 }-10x+41$$

    Here  $$P(x, 0)\equiv(x_1,y_1)$$ $$B(-2, 3)\equiv(x_2,y_2)$$

    Similarly, $$PB=\sqrt { (-2-x)^{ 2 }+(3-0)^{ 2 } } =\sqrt { x^{ 2 }+4+4x+9 } =\sqrt { x^{ 2 }+4x+13 }$$ 

    Therefore, $$PB^{ 2 }=x^{ 2 }+4x+13$$

    Equation (1) becomes

    $$x^2-10x+41=x^2+4x+13$$

    $$-10x-4x=13-41$$

    $$-14x = -28$$

    $$x =2$$

    Hence the point on x-axis is $$(2, 0)$$.
  • Question 10
    1 / -0
    If the distances of $$P(x,y)$$ from $$A(-1,5)$$ and $$B(5,1)$$ are equal, then
    Solution
    Let the points be $$P(x, y)$$, $$A(-1,5)$$ and $$B(5,1)$$
     
    Distance between two points is $$\sqrt { { ({ x }_{ 2 } }-{ x }_{ 1 })^{ 2 }+{ ({ y }_{ 2 } }-{ y }_{ 1 })^{ 2 } }$$

    $$PA=\sqrt { (-1-x)^{ 2 }+(5-y)^{ 2 } } =\sqrt { x^{ 2 }+1+2x+25+y^2-10y } =\sqrt { x^2+y^2+2x-10y+26 }$$ 

    Therefore, $$PA^{ 2 }=x^2+y^2+2x-10y+26$$

    Similarly, 

    $$PB=\sqrt { (5-x)^{ 2 }+(1-y)^{ 2 } } =\sqrt { 25+x^2-10x+1+y^2-2y } =\sqrt { x^2+y^2-10x-2y+26 }$$ 

    Therefore, $$PB^{ 2 }=x^2+y^2-10x-2y+26$$

    Since it is given that the distances are equal therefore $$PA^2=PB^2$$ that is

    $$x^2+y^2+2x-10y+26=x^2+y^2-10x-2y+26$$
    $$2x-10y=-10x-2y$$
    $$2x+10x=-2y+10y$$
    $$12x=8y$$
    $$3x=2y$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now