Self Studies

Straight Lines Test 12

Result Self Studies

Straight Lines Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If coordinates of P,Q, and R are (3,6),(-1,3) and (2,-1) respectively. Then area of $$\displaystyle \triangle PQR$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of $$\displaystyle \Delta PQR$$ is given by
    $$\displaystyle =\frac{1}{2}\left [ 3\left ( 3+1 \right )-1\left ( -1-6 \right )+2\left ( 6-3 \right ) \right ]$$
    $$\displaystyle =\frac{1}{2}\left ( 12+7+6 \right )=12.5$$ square units.
  • Question 2
    1 / -0
    Find the slopes of the line whose inclination is $$135^\circ$$.
    Solution
    We know that, if inclination of a line with positive x-axis is $$\theta$$, then slope $$, m=\tan \theta$$
    Here $$ \theta=135^o$$ is given 
    So slope, $$m=\tan 135^o= - 1$$
  • Question 3
    1 / -0
    The area of triangle formed by $$(0, 0), (0, a)$$ and $$(b, 0)$$ is .......... .
    Solution
    The area of a triangle formed by joining the points $$(x_1, y_1)$$, $$(x_2, y_2)$$ and $$(x_3, y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \bigg| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \bigg|$$

    Therefore, the area of a triangle formed by joining the points $$(0, 0)$$, $$(0, a)$$ and $$(b, 0)$$ is:

    $$A=\dfrac { 1 }{ 2 } \bigg| 0(0-b)+a(b-0)+0(0-0) \bigg| $$

         $$=\dfrac { 1 }{ 2 } \bigg| 0+ab \bigg| $$

         $$=\bigg| \dfrac { ab }{ 2 }  \bigg|$$
     
    Hence, the area of the triangle is $$\left| \dfrac { ab }{ 2 }  \right|$$  
  • Question 4
    1 / -0
    The inclination of a line is $$30^{\circ}$$, then the slope of the line is
    Solution
    We know that, if inclination of a line with positive x-axis is $$\theta$$, then slope $$, m=\tan \theta$$
    Here $$ \theta=30^o$$ is given 
    So slope, $$m=\tan 30^o= \dfrac{1}{\sqrt 3}$$
  • Question 5
    1 / -0
    The points $$(6, 2), (2, 5)$$ and $$(9, 6)$$ form the vertices of a __triangle.
    Solution
    The distance between the points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ is given by:
    $$D=\sqrt { { ({ x }_{ 2 }-{ x }_{ 1 }) }^{ 2 }+{ ({ y }_{ 2 }-{ y }_{ 1 }) }^{ 2 } }$$
    Now, we find the distances between the points $$(6,2)$$, $$(2,5)$$ and $$(9,6)$$ as shown below:
    $$AB=\sqrt { { (2-6) }^{ 2 }+{ (5-2) }^{ 2 } } =\sqrt { { (-4) }^{ 2 }+{ 3 }^{ 2 } } =\sqrt { 16+9 } =\sqrt { 25 } =5$$
    $$BC=\sqrt { { (9-2) }^{ 2 }+{ (6-5) }^{ 2 } } =\sqrt { { 7 }^{ 2 }+{ 1 }^{ 2 } } =\sqrt { 49+1 } =\sqrt { 50 } =5\sqrt {2}$$
    $$AC=\sqrt { { (9-6) }^{ 2 }+{ (6-2) }^{ 2 } } =\sqrt { { 3 }^{ 2 }+{ 4 }^{ 2 } } =\sqrt { 9+16 } =\sqrt { 25 } =5$$
    Since $$AB=AC$$, therefore, the triangle is an isosceles triangle because it has two congruent sides.
    Now consider, $${ c }^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }\\ \Rightarrow { (5\sqrt { 2 } ) }^{ 2 }={ 5 }^{ 2 }+{ 5 }^{ 2 }\\ \Rightarrow 25\times 2=25+25\\ \Rightarrow 50=50$$
    Thus, it is a right triangle because its sides satisfy the pythagoras theorem.
    Hence, the triangle is a right isosceles triangle.  
  • Question 6
    1 / -0
    Area of triangle whose vertices are $$(0, 0), (2, 3), (5, 8)$$ is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is
    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| 0(2-5)+3(5-0)+8(0-2) \right| =\dfrac { 1 }{ 2 } \left| 0+15-16 \right| =\dfrac { 1 }{ 2 } \left| -1 \right| =\dfrac { 1 }{ 2 }$$       
    Hence, the area of the triangle is $$\dfrac { 1 }{ 2 }$$ square units.
  • Question 7
    1 / -0
    The area of a triangle with the vertices $$(1, 2), (3, 4)$$ and $$(5, 6)$$, is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:

    $$A=\dfrac { 1 }{ 2 } \left| 2(3-5)+4(5-1)+6(1-3) \right| =\dfrac { 1 }{ 2 } \left| -4+16-12 \right| =\dfrac { 1 }{ 2 } \left| 16-16 \right| =\dfrac { 1 }{ 2 } \left| 0 \right| =0$$

    Hence, the area of the triangle is $$0$$.
  • Question 8
    1 / -0
    One end of a diagonal of a square is $$(2, 0)$$ and its slope is $$1$$. If the length of the side of a square is $$2$$ units, then write all the possible coordinates of the other end.
    Solution
    Given 
    One end of diagonal of square is $$(2,0)$$ and slope is 1
    Let other end of diagonal is $$(x,y)$$
    then $$m=1$$
    $$1=\dfrac{y}{x-2}$$
    $$x-2=y$$----(1)
    The length of side of square is 2 hence 
    By pythagoras theoram length of diagonal be $$\sqrt{8}$$
    $$\sqrt{(x-2)^2+y^2}=\sqrt{8}$$
    On squaring both sides 
    $$(x-2)^2+y^2=8$$
    from eq (1)
    $$2y^2=8$$
    $$y^2=4$$
    $$y=\pm 2=2,-2$$
    $$x=4,0$$
    Possible coordinates are $$(4,2)$$ and $$(0,-2)$$

  • Question 9
    1 / -0
    If $$(1, 2), (3, 4)$$ and $$(0, 6)$$ are the three vertices of a parallelogram taken in that order, then the fourth vertex is .......... .
    Solution
    Let the vertices of the parallelogram be $$A(1,2)$$, $$B(3,4)$$, $$C(0,6)$$ and $$D(x,y)$$. 
    Thus, the diagonals are AC and BD. 
    Now diagonals of a parallelogram bisect each other. 
    Therefore, the midpoint of AC is the midpoint of BD.

    Now the midpoint of AC is $$\left(\dfrac{1+0}{2},\dfrac{2+6}{2}\right)=\left(\dfrac{1}{2},4\right)$$.

    Now the midpoint of BD will be $$\left(\dfrac{3+x}{2},\dfrac{4+y}{2}\right)=\left(\dfrac{1}{2},4\right)$$ 

    $$\dfrac{3+x}{2}=\dfrac{1}{2}$$ or $$x=-2$$. 

    Similarly $$\dfrac{4+y}{2}=4$$ or $$y=4$$

    Hence the last vertex is $$(-2,4)$$.
  • Question 10
    1 / -0
    Find the area of $$\Delta ABC$$, in which $$A = (2, 1), B = (3, 4)$$ and $$C = (-3, -2).$$
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Therefore, the area of triangle with vertices $$(2,1)$$, $$(3,4)$$ and $$(-3,-2)$$ is:
    $$A=\displaystyle \frac { 1 }{ 2 } \left| 2(4-(-2))+3(-2-1)-3(1-4) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 2(6)+3(-3)-3(-3) \right| $$
    $$=\dfrac { 1 }{ 2 } \left| 12-9+9 \right|$$
    $$ =\dfrac { 1 }{ 2 } \left| 12 \right| =6$$ square units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now