Self Studies

Straight Lines Test 13

Result Self Studies

Straight Lines Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the triangle formed by the points $$(2, 6), (10, 0)$$ and $$(0, k)$$ is zero square units. Find the value of $$k.$$
    Solution
    The area of the triangle is:

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    We are given that the area of the triangle is $$0$$ and the points are $$(2,6)$$, $$(10,0)$$ and $$(0,k)$$, therefore,

    $$\Rightarrow 0=\dfrac { 1 }{ 2 } \left| 6(10-0)+0(0-2)+k(2-10) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-0-8k \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-8k \right| $$

    $$\Rightarrow 60-8k=0\\ \\ \Rightarrow 8k=60\\ \Rightarrow k=\dfrac { 60 }{ 8 } =\dfrac { 15 }{ 2 }$$
     
    Hence, $$k=\dfrac { 15 }{ 2 }$$.
  • Question 2
    1 / -0
    Area of a triangle whose vertices are (0, 0), (2, 3) , (5, 8) is _______ square units.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (0,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (2,3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,8)$$ in the area formula, we get

    Area of triangle ABC  $$ = \left| \frac {  (0)(3-8)+(2)(8-0)+5(0-3) }{ 2 }  \right|  = \left| \frac { 16 -15 }{ 2 }  \right|  = \frac {1}{2} units $$

  • Question 3
    1 / -0
    The points (6 , 2) (2 , 5) and ( 9 , 6) form the vertices of a _________ triangle
    Solution

    Let $$ A (6,2), B (2,5) $$ and $$ C (9,6) $$

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Distance between the points A$$ (6,2) $$ and B $$ (2,5) = \sqrt { \left( 2-6 \right) ^{ 2 }+\left( 5-2 \right) ^{ 2 } } = \sqrt { 16+9 } = \sqrt { 25 } = 5 $$
    Distance between the points B$$ (2,5) $$ and C $$ (9,6) = \sqrt { \left( 9-2 \right) ^{ 2 }+\left( 6-5 \right) ^{ 2 } } = \sqrt {49+1 } = \sqrt {50 } $$
    Distance between the points A$$ (6,2) $$ and C $$ (9,6) = \sqrt { \left( 6-9 \right) ^{ 2 }+\left( 2-6\right) ^{ 2 } } = \sqrt { 9 + 16 } = \sqrt { 25} = 5 $$

    Since, two sides are equal in length  $$ {(\sqrt { 50 }) }^{2} = {(\sqrt { 25 }) }^{2} + {(\sqrt { 25 }) }^{2} $$, the triangle is a right angled isosceles triangle.

  • Question 4
    1 / -0
    The line through (1, 5) parallel to x-axis is __________
    Solution
    From the graph, the line through $$ (1,5) $$ and parallel to x-axis is $$ y = 5 $$ as all points along the line has  $$ y = 5 $$

  • Question 5
    1 / -0
    Find the equation of a line passing through the points A(3, -5) and (4, -8)
    Solution

    Equation of line joining two points $$ ({x}_{1}, {y}_{1}) $$ and $$ ({x}_{2}, {y}_{2}) $$ is $$ y - {y}_{1} = \frac { {y}_{2} - {y}_{1}}{ {x}_{2} - {x}_{1}} (x-{x}_{1}) $$

    So, equation of line joining $$ A(3,-5) ; B (4,-8) $$ is $$ y +5 =  \frac {-8+5}{4-3} (x-3) $$
    $$ =>  y + 5 = (-3)(x-3) $$
    $$ => => y+5 = -3x + 9 $$
    $$ => 3x + y  = 4 $$


  • Question 6
    1 / -0
    The area of triangle with vertices $$A(5,\,0),\,B(8,\,0)$$ and $$C(9,\,5)$$ is
    Solution
    Area of triangle $$=\dfrac{1}{2}\begin{bmatrix}x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\end{bmatrix}$$
    $$A=\dfrac{1}{2}\begin{bmatrix}5(0-5)+8(5-0)+9(0-0)\end{bmatrix}$$
    $$A=\dfrac{1}{2}\begin{bmatrix}-25+40\end{bmatrix}=\dfrac{15}{2}$$ square units.
    So, option B is correct.
  • Question 7
    1 / -0
    The point $$A(-5,\,8)$$  ______ on circle of radius $$6$$ and centre $$(8,\,9)$$.
    Solution
    Radius of circle$$=6$$ 
    Now, the distance between the centre O and point A is
    $$OA=\sqrt{(8-(-5))^2+(9-8)^2}$$
    $$=\sqrt{(13)^2+(1)^2}=\sqrt{170}>6$$
    The point does not lie on circle.
    So, option C is correct.
  • Question 8
    1 / -0
    $$\triangle OPQ$$ is formed by the coordinates $$P(0,\,5),\, Q(8,\,0)$$ and origin $$O$$. The area of $$\triangle OPQ$$ is ____ square units.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Area of $$\triangle OPQ $$
    $$=\dfrac 12 \left[ 1(0) - 1(0) +1(-40)\right]$$
    $$=\dfrac 12 \times 40 = 20$$ sq. units
  • Question 9
    1 / -0
    The area of triangle with vertices $$A(0,\,9),\,B(0,\,4)$$ and $$C(-5,\,-9)$$ is
    Solution
    Area of triangle $$=\dfrac{1}{2}\begin{bmatrix}x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\end{bmatrix}$$
                               $$=\dfrac{1}{2}\begin{bmatrix}0(4+9)+0(-9-9)+(-5)(9-4)\end{bmatrix}$$
                               $$=\dfrac{1}{2}\begin{bmatrix}-5\times5\end{bmatrix}$$
                               $$=-\dfrac{25}{2}$$
    The area cannot be negative.
    $$\therefore$$ It must be $$\dfrac{25}{2}$$ sq. units
    So, option A is correct.
  • Question 10
    1 / -0
    A circle has its centre at origin and point $$P(8,0)$$ lies on it. 
    The point $$Q(2,\,8)$$ lies
    Solution
    The radius of the circle is the distance between points O and P i.e. $$8$$ units.
    Distance between O and Q
    $$=\sqrt{(2-0)^2+(8-0)^2}$$
    $$=\sqrt{4+64}=\sqrt{68}>8$$
    Therefore point Q lies outside the circle.
    So, option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now