Self Studies

Straight Lines Test 14

Result Self Studies

Straight Lines Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The perimeter of triangle with vertices $$A(0,\,9),\,B(0,\,0)$$ and $$C(9,\,0)$$
    Solution
    AB=$$9$$ units,  BC=$$9$$ units( hint: by using distance formula)
    AC $$=\sqrt{(9-0)^2+(0-a)^2}=\sqrt{81+81}=\sqrt{81(2)}$$
          $$=9\sqrt{2}$$ units
    Perimeter $$=9+9+9\sqrt{2}$$
    $$=18+9\sqrt{2}$$ units
    $$=9(2+\sqrt{2})$$ units
    So, option B is correct.
  • Question 2
    1 / -0
    The area of the triangle formed from points $$(1, 2), (2, 4)$$ and $$(3, 1)$$ is ____ square units.
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 1$$, $$y_{1} = 2$$, $$x_{2} = 2$$, $$y_{2} = 4$$, $$x_{3} = 3$$ and $$y_{3} = 1$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[1(4 - 1) + 2(1 - 2) + 3(2 - 4)]\right|$$
                               $$=$$ $$\left|\dfrac{1}{2}\times[3 - 2 - 6]\right|$$
                               $$=$$ $$\left|\dfrac{1}{2}\times -5\right|$$
                               $$=$$ $$\left|-\frac{5}{2} \right|$$
    Area always in absolute value.
    So, area of the triangle $$= \dfrac{5}{2}$$ square units.
  • Question 3
    1 / -0
    The perimeter of triangle with vertices $$A(0,\,0),\,B(5,\,7)$$ and $$C(9,\,5)$$
    Solution
    P $$=AB+BC+CA$$
    $$AB=\sqrt{5^2+7^2}$$ and $$BC=\sqrt{(5-9)^2+(7-5)^2}$$
           $$=\sqrt{25+49}$$ and  $$BC=\sqrt{16+4}=\sqrt{20}$$
           $$=\sqrt{74}$$               
    CA $$=\sqrt{9^2+(5)^2}=\sqrt{81+25}$$
    CA $$=\sqrt{106}$$
    $$P=\sqrt{74}+\sqrt{20}+\sqrt{106}$$
    So, option C is correct.
  • Question 4
    1 / -0
    Are the points $$(5,\,5),\,(8,\,2)$$ and $$(3,\,-4)$$ are vertices of right angled triangle.
    Solution
    Let the points $$A(5,\,5),\,B(8,\,2)$$ and $$C(3,\,-4)$$ are vertices of triangle.
    $$AB^2=(5-8)^2+(5-2)^2=9+9=18$$
    $$BC^2=(8-3)^2+(2+4)^2=25+36=61$$
    $$CA^2=(3-5)^2+(-4-5)^2=4+81=85$$
    $$AB^2+AC^2\neq BC^2$$
    The vertices are not points of a right angled triangle.
  • Question 5
    1 / -0
    $$(9, 2), (5, -1) $$ and $$ (7, -5)$$ are the vertices of the triangle. Find its area.
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 9$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = -1$$, $$x_{3} = 7$$ and $$y_{3} = -5$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[9(-1 + 5) + 5(-5 - 2) + 7(2 + 1)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 35 + 21]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 22\right|$$
    $$=$$ $$\left|11 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 11$$ square units.
  • Question 6
    1 / -0
    What is the area of the triangle whose vertices are: $$(-3, 15), (6, -7) $$ and $$(10, 5)$$?
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$  is $$A=\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    Here $$x_{1} = -3$$, $$y_{1} = 15$$, $$x_{2} = 6$$, $$y_{2} = -7$$, $$x_{3} = 10$$ and $$y_{3} = 5$$

    Substituting the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[-3(-7 - 5) + 6(5 - 15) + 10(15 + 7)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 60 + 220]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 196\right|$$
    $$=$$ $$\left|98 \right|$$

    Area is always in absolute value.
    So, area of the triangle $$= 98$$ square units.
  • Question 7
    1 / -0
    Are the points $$(5,\,3),\,(2,\,9)$$ and $$(-8,\,4)$$ are vertices of
    Solution
    Let points $$A(5,\,3),\,B(2,\,9)$$ and $$C(-8,\,4)$$ are vertices of right angled triangle.
    $$AB^2=(5-2)^2+(3-9)^2=9+36=45$$
    $$BC^2=(2+8)^2+(9-4)^2=100+25=125$$
    $$CA^2=(5+8)^2+(3-4)^2=169+1^2=170$$
    $$AB^2+BC^2=CA^2$$
    It is a right angled triangle's vertices.
    So, option A is correct.
  • Question 8
    1 / -0
    What is the area of the triangle for the following points $$(6, 2), (5, 4)$$ and $$(3, -1)$$?
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 6$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = 4$$, $$x_{3} = 3$$ and $$y_{3} = -1$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[6(4 + 1) + 5(-1 - 2) + 3(2 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[30 - 15 - 6]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 9\right|$$
    $$=$$ $$\left|4.5 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 4.5$$ square units.
  • Question 9
    1 / -0
    The area of the triangle whose vertices are $$(0, 1), (1, 4)$$ and $$(1, 2)$$ is ___ square units.
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 0$$, $$y_{1} = 1$$, $$x_{2} = 1$$, $$y_{2} = 4$$, $$x_{3} = 1$$ and $$y_{3} = 2$$
    Substitute the values, we get
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[0(4 - 2) + 1(2 - 1) + 1(1 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[0 + 1 - 3]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times -2\right|$$
    $$=$$ $$\left|- 1 \right|$$
    Area always in absolute value.
    So, area of the triangle is $$ 1$$ square units.
  • Question 10
    1 / -0
    The point on the line $$4x - y - 2 = 0$$ which is equidistant from the points $$(-5, 6)$$ and $$(3, 2)$$ is
    Solution
    Let the point on line $$4x-y-2=0$$ be $$P(x,y)$$.
    Let $$A \equiv (-5,6)$$ and $$B \equiv (3,2)$$
    $$4x-y-2=0$$     ....(1)
    Point P is equidistant from points A and B           ....Given
    $$\therefore AP = PB$$
    By distance formula,
    $$(x+5)^2 + (y-6)^2 = (x-3)^2 + (y-2)^2$$
    $$x^2+10x+25 + y^2 - 12y + 36 = x^2 - 6x +9 + y^2 - 4y + 4$$
    $$16x - 8y + 48=0$$
    $$4x-2y+12=0$$    ....(2)
    Subtract eq(2) from eq (1), we get
    $$y=14$$
    Substitute in eq(1), we get
    $$x=4$$
    So, the point on the line is $$(4, 14)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now