Self Studies

Straight Lines Test 17

Result Self Studies

Straight Lines Test 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the coordinate plane, the points $$F(-2, 1), G(1, 4)$$ and $$H(4, 1)$$ lie on a circle with center $$P$$. What are the coordinates of point $$P$$ ?
    Solution
    Let $$H\equiv(x_1,y_1)=(4,1)$$
          $$G\equiv(x_2,y_2)=(1,4)$$
          $$F\equiv(x_3,y_3)=(-2,1)$$
          $$P\equiv (x,y)$$
    slope of $$m_r=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{4-1}{1-4}=-1$$
    slope of $$m_t=\dfrac{y_3-y_2}{x_3-x_2}=\dfrac{1-4}{-2-1}=1$$
    Formula for x-coordinate of the center of the circle is given as:
    $$x=\dfrac{m_rm_t(y_3-y_1)+m_r(x_2+x_3)-m_t(x_1+x_2)}{2(m_r-m_t)}$$
    $$\therefore x=\dfrac{(-1)(1)(1-1)+-1(1+(-2))-1(4+1)}{2(-1-1)}$$
    $$\therefore x=\dfrac{0+1-5}{-4}=1$$
    $$y=-\dfrac{1}{m_r}\bigg[x-\dfrac{x_1+x_2}{2}\bigg]+\dfrac{y_1+y_2}{2}$$
    $$\therefore y=-\dfrac{1}{-1}\bigg[1-\dfrac{4+1}{2}\bigg]+\dfrac{1+4}{2}$$
    $$\therefore y=\bigg[\dfrac{2-5}{2}\bigg]+\dfrac{5}{2}=1$$
    $$\therefore P\equiv(1,1)$$
    Hence, option $$B$$ is correct.

  • Question 2
    1 / -0
    The line $$L$$ crosses the $$X$$-axis at $$(-8, 0)$$. The area of the shaded region is $$16$$. What is the slope of the line $$L$$?

    Solution
    Given line L in graph intersect x-axis at point$$A(-8,0)$$
    Let line L intersecting y-axis at point $$B(0,y)$$
    Then $$area=16$$ 
    Area of triangle$$=\left |\dfrac{1}{2}\times xy  \right |$$
    $$16=\left |\dfrac{1}{2}\times (-8)y  \right |$$
    $$16=4y\Rightarrow y=4$$
    Hence $$B(0,4)$$
    Slope of line l from A and B is $$m=\dfrac{4-0}{0+8}$$
    Slope of line l $$m=\dfrac{4}{8}\Rightarrow m=\dfrac{1}{2}$$

  • Question 3
    1 / -0
    If $$QR = 5\ units$$, identify the co-ordinates of Q.

    Solution
    By using distance formula
    $$P{ Q }^{ 2 }=R{ Q }^{ 2 }$$
    Let the point Q be taken as (x,y)
    $$(x+2)^{ 2 }+(y-0)^{ 2 }=(x-4)^{ 2 }+(y-0)^{ 2 }\\ { x }^{ 2 }+4x+4+{ y }^{ 2 }={ x }^{ 2 }-8x+16+{ y }^{ 2 }\\ 4x+4=-8x+16\\ 12x=12\Rightarrow x=1$$
    Distance of QR is given as 5 units
    $$\therefore  y=4$$
    $$\rightarrow Q=(1,4)$$
  • Question 4
    1 / -0
    In the figure above, line $$\iota $$ (not shown) is perpendicular to segment $$AB$$ and bisects segment $$AB$$. Which of the following points lies on line $$\iota $$? 

    Solution
    Given line l bisects AB and perpendicular to AB.
    To find point lie on the line 
    Slope of the line perpendicular to AB 
    $${ m }_{ 1 }{ m }_{ 2 }=-1\\ -1m_{ 2 }=-1\\ m_{ 2 }=1$$ 
    And it will pass through the midpoint of AB 
    Let coordinates of midpoint be $$(x,y)$$
    $$x=\cfrac { 0+2 }{ 2 } =1\\ y=\cfrac { 0+2 }{ 2 } =1\\ (x,y)=(1,1)$$
    So equation of line passing through $$(1,1)$$ and having slope $$m=1$$
    $$(y-1)=1\times (x-1)\\ y-1=x-1\\ y=x$$ 
    Hence $$(3,3)$$ be the point that lie on this line.

  • Question 5
    1 / -0
    In the rectangle shown, find the value of $$a - b$$

    Solution
    From the figure,
    $$A{ D }^{ 2 }-A{ B }^{ 2 }$$ i.e, distance is same
    $$(9-5)^{ 2 }+(2-5)^{ 2 }=(9-15)^{ 2 }+(2-b)^{ 2 }\\ 16+9=36+4-4b+{ b }^{ 2 }\\ -15=-4b+b^{ 2 }\\ \Rightarrow { b }^{ 2 }-4b+15=0\\ \therefore b=12.2\\ D{ C }^{ 2 }=B{ C }^{ 2 }\\ (5-a)^{ 2 }+(5-13)^{ 2 }=(a-15)^{ 2 }+(13-2)^{ 2 }\\ 25-10a+{ a }^{ 2 }+64={ a }^{ 2 }-30a+225+121\\ 20a=225+121-64-25\\ \therefore a=13\\ \therefore a-b=1\\ $$
  • Question 6
    1 / -0
    The vertices of a triangle are $$A(2,2), B(-4,4), C(5,-8)$$. Then, find the length of the median through $$C$$.
    Solution
    'D' is mid point
    $$\therefore D=\left(\dfrac{2-4}{2},\dfrac{2+4}{2}\right)$$
    $$D=(-1,3)$$
    $$\therefore CD=\sqrt{[5-(-1)]^{2}+(-8-3)^{2}}$$
    $$=\sqrt{6^{2}+11^{2}}=\sqrt{157}$$

  • Question 7
    1 / -0
    Find the third vertex of an equilateral triangle whose two vertices are $$(2,4)$$ and $$(2,6)$$.
    Solution
    Length of side of equilateral triangle is $$AB=BC=CA=2$$.

    Let's take the third vertex to be $$C(x,y)$$

    Then $$AC=BC=>AC^2=BC^2$$.

    By distance formula:

    $$\sqrt((x-2)^2+(y-4)^2)=\sqrt((x-2)^2+(y-6)^2)$$

    $$=>-4y+4=-12y+36$$

    $$=>y=5$$

    Now $$AC^2=4=((x-2)^2+(y-4)^2)$$.

    Putiing $$y=5$$:

    $$=>x^2-4x+1=0$$.

    So, solving the quadratic we get:

    $$x=2+\sqrt3$$ or $$2-\sqrt3$$.

    So, required point is $$(2+\sqrt3,5)$$ and $$(2-\sqrt3,5)$$.
  • Question 8
    1 / -0
    Find the perimeter of the triangle formed by $$(0,0),(1,0)$$ and $$(0,1)$$.
    Solution
    $$AB=\sqrt{OA^{2}+OB^{2}}$$
    $$\Rightarrow AB=\sqrt{2}$$
    $$\therefore S=1+1+\sqrt{2}=2+\sqrt{2}$$ units

  • Question 9
    1 / -0
    $$A,B,C$$ are three collinear points. The coordinates of $$A$$ and $$B$$ are $$(3,4)$$ and $$(7,7)$$ respectively and $$AC=10$$ units. Find the co-ordinates of $$C$$.
    Solution

  • Question 10
    1 / -0
    Find the mid points of $$(6,2)$$ and $$(-1,3)$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now