Self Studies

Straight Lines Test 19

Result Self Studies

Straight Lines Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the graphs of the equations $$2x + 5y = 7$$ and $$6x + cy = 11$$ are parallel lines, c is equal to
    Solution
    • Given that the lines $$2x+5y=7$$ and $$6x+cy=11$$ are parallel
    • So there slopes are equal
    • We get $$-2/5 = -6/c$$ , which gives $$c = 15$$
  • Question 2
    1 / -0
    Let $$S$$ be the set of points whose abscissas and ordinates are natural numbers. Let $$P \in S$$ such that the sum of the distance of $$P$$ from $$(8,0)$$ and $$(0,12)$$ is minimum among all elements in $$S$$. Then the number of such points $$P$$ in $$S$$ is
    Solution

    The sum of the distances of $$P$$ from $$A(8,0),B(0,12)$$ is minimum if $$P$$ lies on line joining $$AB$$ and between them
    $$AP+PB=AB$$
    $$AP'+P'B>AB$$ by triangle property
    So let $$P(x,y)$$
    The line $$AB$$ is $$\dfrac { x }{ 8 } +\dfrac { y }{ 12 } =1$$
    ie $$3x+2y=24$$
    $$\Rightarrow 3x=2(12-y)$$
    So $$y$$ can be $$3,6,9$$
    $$y=3,x=6\rightarrow 1$$ point
    $$y=6,x=4\rightarrow 1$$ point
    $$y=9,x=2\rightarrow 1$$ point
    So in total three points.

  • Question 3
    1 / -0
    If a straight line $$y=2x+k$$ passes through the point $$(1,2)$$ then the value of $$k$$ is equal to:
    Solution
    $$\text{if straight line y=2x+k passes through the point (1,2), then (1,2) satisfies this line.}$$
    $$\Rightarrow 2=2(1)+k$$
    $$\Rightarrow k=0$$
  • Question 4
    1 / -0
    Which of the following sets of points is collinear
    Solution
    General equation of a line: 

    $$y = mx + c $$

    Now, equation of line passing through $$( 1,-1)$$ and $$(-1,1)$$

    Here, both points $$(1,-1)$$ and $$(-1,1)$$ should satisfies the line.

    $$(1,-1)$$ gives $$-1 = m+c$$  ... (i)

    $$(-1,1)$$ gives  $$1 = -m +c $$   ...(ii)

    Solving (i) and (ii), we get

    $$m = -1$$ and $$c=0$$ 

    Therefore equation of line is $$y = -x$$

    Now, $$(0,0)$$ satisfies the line but $$(0,1), (1,0)$$ and $$(1,1)$$ does not satisfies it.

    Hence, $$(1,-1), (-1,1), (0,0)$$ is a set of collinear points.
  • Question 5
    1 / -0
    In the figure, PB is perpendicular segment from the point A$$(4, 3)$$. If PA = PB then find the coordinate of B.

    Solution
    $$(4,-3)$$ since x co-ordinate will be same since line 11 toy axis the distance above $$=3$$ so distance down will be 3

  • Question 6
    1 / -0
    Area of the triangle formed by the points $$\left( 0,0 \right) ,\left( 2,0 \right) $$ and $$\left( 0,2 \right) $$ is 
    Solution
    Given: $$A=(x_1,y_1)=(0,0)$$

                $$B=(x_2,y_2)=(2,0)$$ and 

                $$C=(x_3,y_3)=(0,2)$$

    Area of triangle $$=\dfrac {1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)++x_3(y_1-y_2)]$$                                     
                               
                               $$=\dfrac {1}{2}[0(0-2)+2(2-0)+0(0-0)]$$

                               $$=\dfrac {1}{2}[2(2)]$$

                               $$=2$$ sq. units.
  • Question 7
    1 / -0
    What is the perimeter of the triangle with vertices $$A (-4, 2), B (0, -1)$$ and $$C (3, 3)$$?
    Solution
    Given : $$A (-4, 2), B (0, -1)$$ and $$C (3, 3)$$
    Now distance between A and B $$=\sqrt { (4)^{ 2 }+(-3)^{ 2 } } = 5$$
    Distance between A and C $$=\sqrt { (7)^{ 2 }+(1)^{ 2 } } = 5\sqrt { 2 }$$
    Distance between B and C $$=\sqrt { (3)^{ 2 }+(4)^{ 2 } } =5$$
    So perimeter $$=AB+BC+AC=10+5\sqrt2$$ 
    Hence, option B is correct.
  • Question 8
    1 / -0
    Area of the triangle formed by the points $$(0,0),(2,0)$$ and $$(0,2)$$ is
    Solution

    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Therefore,
    $$=\dfrac{1}{2}\left|0(0-2)+2(2-0)+0(0-0)\right|$$

    $$=\dfrac{1}{2}\left|0+4+0\right|$$

    $$=\dfrac{1}{2}\times 4=2\ sq.\ units$$

    Hence, this is the answer.
  • Question 9
    1 / -0
    Find the value of $$a$$ if area of the triangle is $$17$$ square units whose vertices are $$(0,0), (4,a), (6,4)$$.                         
    Solution
    vertices of the triangle are $$A(0,0), B(4,a), C(6,4)$$.

    Then area of triangle$$ABC=\dfrac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]$$

                                                 $$\Rightarrow 17=\dfrac{1}{2}[0(a-4)+4(4-0)+6(0-a)$$

                                                 $$\Rightarrow 34=16-6a$$

                                                 $$\Rightarrow a=-\dfrac{18}{6}=-3$$
  • Question 10
    1 / -0
    The vertices of a triangle ABC are A(2, 3, 1), B(-2, 2, 0) and C(0, 1, -1). Find the cosine of angle ABC.
    Solution
    Given $$A(2, 3, 1), B(-2, 2, 0)$$ and $$C(0, 1, -1)$$

    For $$\triangle ABC,$$ 

    $$a=BC=\sqrt { { (-2-0) }^{ 2 }+{ (2-1) }^{ 2 }+{ (0+1) }^{ 2 } } \\ \therefore a=\sqrt { 6 } \\ b=AC=\sqrt { { (2-0) }^{ 2 }+{ (3-1) }^{ 2 }+{ (1+1) }^{ 2 } } \\ \therefore b=\sqrt { 12 } \\ c=AB=\sqrt { { (2+2) }^{ 2 }+{ (3-2 })^{ 2 }+{ (1) }^{ 2 } } \\ \therefore c=\sqrt { 18 } \\ \cos { \angle ABC } =\cfrac { { a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 } }{ 2ac } \\ =\cfrac { 18+6-12 }{ 2\times 3\sqrt { 2 } \times \sqrt { 6 }  } \\ =\cfrac { 1 }{ \sqrt { 3 }  } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now