Self Studies

Straight Lines Test -2

Result Self Studies

Straight Lines Test -2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Slope of a line is not defined if the line is

    Solution

    Vertical lines hve undefined slopes. Hence a line which is parallel to Y-axis has undefined slopes.

    Hence option 1 is correct.

  • Question 2
    1 / -0

    The distance of the point (α,β) from X axis is

    Solution

    The distance of a  point from X axis is its y coordinate.

    Hence the distance of the point (α,β) from X axis  is |β|

  • Question 3
    1 / -0

    Projection (the foot of perpendicular) from ( x , y ) on the x – axis is

    Solution

    Let L be the foot of the perpendicular from the X axis. Therefore its y coocrdinate is zero

    Therefore the coordiantes of the point L is (x,0)

    Hence option 1 is the correct answer

  • Question 4
    1 / -0

    Slope of any line parallel to X axis is

    Solution

    Since the angle made with x axis is zero, since tanθθ is the slope. Then tan0 = 0

    Hence the slpoe of the line parallel to X-axis is zero

    Option 1 is the correct answer.

  • Question 5
    1 / -0

    The straight lines x + y = 0 , 3x - y – 4 = 0 , x + 3y – 4 = 0 form a triangle which is

    Solution

    The lines formed by these lines is right angled, triangle.

    Two lines are perpendicular to each other if the product  od their slopes is -1

    Slope of the lines  3x - y – 4 = 0 , x + 3y – 4 = 0 are 3 and -1/3 respectively.

    The product of these slopes is -1

    Hence the lines3x - y – 4 = 0 , x + 3y – 4 = 0  are perpendicular to each other.

    Therefore the triangle formed by these lines is a right angled triangle.

  • Question 6
    1 / -0
    The angle between line:  $$r[2 \cos \theta  + 5\sin\theta ] = 3$$ and $$r[2 \sin \theta  - 5\cos\theta ]+ 4 = 0$$ is:
    Solution
    Given lines are,
    $$r[2 \cos \theta  + 5\sin\theta ] = 3$$ and
    $$r[2 \sin \theta  - 5\cos\theta ]+ 4 = 0$$
    Cartesian form is,
    $$2x+5y=3$$
    $$2y-5x=-4$$
    Slopes of these lines are $$\displaystyle -\frac{2}{5}$$ and $$\displaystyle\frac {5}{2}$$
    Here, product of slopes $$=-1$$
    Thus, the lines are perpendicular.
    Hence, angle between them is $$90^{o}$$.
  • Question 7
    1 / -0
    The lines $$( {a}+ {b}) {x}+( {a}- {b}) {y}-2 {a} {b}= 0,\ ( {a}- {b}) {x}+( {a}+ {b}) {y}-2 {a} {b}=0$$ and $$ {x}+ {y}=0$$ forms an isosceles triangle whose vertical angle is
    Solution
    For $$({ a }+{ b }){ x }+({ a }-{ b }){ y }-2{ a }{ b }=0$$
    Slope is $${ m }_{ 1 }=-\cfrac { a+b }{ a-b } $$
    And for $$({ a }-{ b }){ x }+({ a }+{ b }){ y }-2{ a }{ b }=0$$
    Slope is $${ m }_{ 2 }=-\cfrac { a-b }{ a+b } $$
    Then angle is
    $$\tan { \theta  } =\left| \cfrac { { m }_{ 1 }-{ m }_{ 2} }{ 1+{ m }_{ 1 }{ m }_{ 2 } }  \right| =\left| \cfrac { -\cfrac { a+b }{ a-b } +\cfrac { a-b }{ a+b }  }{ 1+\cfrac { a+b }{ a-b } \cfrac { a-b }{ a+b }  }  \right| \\ =\left| \cfrac { { a }^{ 2 }+{ b }^{ 2 }-2ab-{ a }^{ 2 }-{ b }^{ 2 }-2ab }{ { a }^{ 2 }-{ b }^{ 2 }+{ a }^{ 2 }-{ b }^{ 2 } }  \right| =\left| \cfrac { 2ab }{ { a }^{ 2 }-{ b }^{ 2 } }  \right| $$
  • Question 8
    1 / -0
    The angle between the lines $$x\cos \alpha+y\sin\alpha={p}_{1}$$ and $$x\cos \beta +y\sin \beta=p_{2},$$ where $$\alpha>\beta$$ is
    Solution

    $$x \cos \alpha+y \sin \alpha=p_1$$

    $$slope=m_1=\dfrac{-\cos  \alpha}{\sin \alpha}=-\cot\alpha$$

    And $$x \cos \beta+y \sin  \beta=p_2$$

    $$slope =m_2=\dfrac{-\cos \beta}{\sin \beta}=-\cot\beta$$

    Therefore, 

    $$\tan\theta=\left | \dfrac{-\cot \alpha+\cot\beta}{1+\cot\alpha cot\beta} \right |$$

    $$\tan\theta=\left | \dfrac{\tan\alpha- \tan\beta}{1+\tan\alpha \tan\beta} \right |$$

    $$\tan\theta=|\tan (\alpha-\beta)|$$

    $$\Rightarrow \theta=\alpha-\beta$$

  • Question 9
    1 / -0
    If the slope of the line passing through the points $$(2, \sin\theta)$$ and $$(1,\cos\theta)$$ is $$0,$$ then the general solution of $$\theta$$, is
    Solution
    Line passing through points $$(2,\sin\theta)$$ and $$(1,\cos\theta)$$ is
    $$y-\cos\theta=(\sin\theta-\cos\theta)(x-1)$$
    $$y=(\sin\theta-\cos\theta)x+2\cos\theta-sin\theta$$
    Slope$$=\sin\theta-\cos\theta=0$$   (given)
    $$\sin\theta=\cos\theta$$
    $$\tan\theta=1$$
    $$\theta=n\pi+\dfrac{\pi}{4},\forall n\in Z$$

    Hence, option A is the correct answer.
  • Question 10
    1 / -0
    $$A(1,3)$$ and $$B(7,5)$$ are two opposite vertices of a square. The equation of a side through $$A$$ is
    Solution
    Let $$m$$ be slope of the line through A
    Slope  of $$\displaystyle AB=\dfrac { 5-3 }{ 7-1 } =\dfrac { 1 }{ 3 } $$
    Joining $$A$$ and $$B$$, the angle between the side through $$A$$ and diagonal becomes $$45^{o}$$
    We know that,
    $$ \displaystyle  \tan\theta=\left | \frac{m_1-m_2}{1+m_2m_2} \right| $$
    $$\displaystyle \Rightarrow \tan { { 45 }^{ o } } =\left| \dfrac { m-\dfrac { 1 }{ 3 }  }{ 1+\dfrac { m }{ 3 }  }  \right| $$
    $$\displaystyle \Rightarrow m=2$$ or $$\displaystyle -\dfrac { 1 }{ 2 }  $$
    Required equations are $$x+2y-7=0$$ or $$\displaystyle  2x-y+1=0$$
  • Question 11
    1 / -0
    If the angle between the lines $$ {k} {x}- {y}+6=0,\ 3 {x}-5 {y}+7=0$$ is $$\displaystyle \frac{\pi}{4},$$ then one of the value of $$ {k}=$$ 
    Solution

    $$kx-y+6=0$$

    $$slope=m_1= \dfrac{-k}{-1}=k$$

    And $$3x-5y+7=0$$

    $$slope=m_2= \dfrac{-3}{-5}= \dfrac{3}{5}$$

    So, angle between this two lines is $$ \dfrac{\pi}{4}$$

    $$\therefore tan \dfrac{\pi}{4}=\left |  \dfrac{m_1-m_2}{1+m_1m_2} \right |$$

    $$1=\left |  \dfrac{k- \dfrac{3}{5}}{1+ \dfrac{3k}{5}} \right |$$

    $$\therefore 1+ \dfrac{3k}{5}=k- \dfrac{3}{5}$$

    $$ \dfrac{8}{5}= \dfrac{2k}{5}$$

    $$k=4$$

  • Question 12
    1 / -0
    The angle between the lines $$kx+y+9=0$$, $$y-3x =4$$ is $$45^{o},$$ then the value of $$k$$ is :
    Solution
    $$kx+y+9=0$$
    $$y=-kx-9$$
    Thus, slope of the line $$m_{1}=-k$$

    Similarly, $$y=3x+4$$
    Slope of the line is $$m_{2}=3$$
    Therefore, angle between the lines is

    $$\tan\theta=\left|\dfrac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right|$$

    $$=\left|\dfrac{3+k}{1-3k}\right|$$

    $$=\left|\dfrac{k+3}{1-3k}\right|$$

    But $$\theta=45^{o}$$
     
    $$\therefore \tan\theta=1$$

    $$\Rightarrow \dfrac{k+3}{1-3k}=\pm1$$

    $$\Rightarrow k+3=\pm(1-3k)$$
    Case I
    $$k+3=1-3k$$
    i.e. $$4k=-2$$
    $$\Rightarrow k=\dfrac{-1}{2}$$

    Case II
    $$k+3=-1+3k$$

    $$\Rightarrow -2k=-4$$

    $$\therefore k=2$$
    Hence, $$k=2,\dfrac{-1}{2}$$
  • Question 13
    1 / -0
    The angle between the lines $$r \cos(\theta -\alpha )= p, r\sin(\theta -\alpha )= q $$ is
    Solution
    Given  $$r \cos (\theta -\alpha )= p$$.......(i)
    $$ r \sin (\theta -\alpha )= q $$    ...(ii)
    Now, equation of line perpendicular to given line is 
    $$r\sin (\dfrac{\pi}{2}+ (\theta -\alpha ))=k$$
    $$\Rightarrow r \cos (\theta -\alpha )=k$$
    which is of the form of given equation (i)
  • Question 14
    1 / -0
    The fourth vertex $$D$$ of a parallelogram $$ABCD$$ whose three vertices are $$A (2, 3), B (6, 7)$$ and $$C (8, 3)$$ is
    Solution
    Let $$A(2,3), B(6,7)$$ and $$C(8,3)$$ be the vertices of parallelogra

    And let $$D(x,y)$$ be the fourth vertex.

    Midpoint of $$AC$$ $$=\left (\dfrac {2+8}{2},\dfrac {3+3}{2}\right)=(5,3)$$

    Also, midpoint of $$BD$$ $$=\left (\dfrac {x+6}{2}, \dfrac {y+7}{2}\right)$$

    Since the diagonals of parallelogram bisect eachother at $$O$$

    Therefore, midpoint of $$AC$$ $$=$$ midpoint of $$BD$$

    $$\Rightarrow \left (\dfrac {x+6}{2},\dfrac {y+7}{2}\right)=(5,3)$$
    $$\Rightarrow \dfrac  {x+6}{2}=5, \dfrac {y+7}{2}=3$$

    $$\Rightarrow x+6=10, y+7=6$$

    $$\Rightarrow x=4, y=-1$$

    Therefore, the coordinates of the fourth vertex will be $$(x,y)=(4,-1)$$.
  • Question 15
    1 / -0
    Find the area of triangle having vertices are $$A (3, 1), B (12, 2)$$ and $$C (0, 2)$$.
    Solution

    The  given  points  are  $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3,1 \right) ,  B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 12,2 \right)   \&   C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 0,2 \right)$$

    Let  us  obtain  $$ar\Delta ABC$$  by  applying  the  area  formula.

    $$ ar\Delta =\dfrac { 1 }{ 2 } \left\{ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right\}$$

    $$\Rightarrow ar\Delta =\dfrac { 1 }{ 2 } \left\{ 3\left( 2-2 \right) +12\left( 2-1 \right) +0\left( 1-2 \right)  \right\}$$ units $$=6$$ units

    $$\therefore   ar\Delta =6$$ units 

    Hence, option B.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now