Self Studies

Straight Lines Test 20

Result Self Studies

Straight Lines Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$ABCD$$ be  a square of a side length $$1$$. Let $$P,Q,R,S$$ be points in the interiors of the sides $$AD,BC,AB,CD$$ respectively, such that $$PQ$$ and $$RS$$ intersect at right angles. If $$PQ=\cfrac { 3\sqrt { 3 }  }{ 4 } $$ then $$RS$$ equals
    Solution
    $$PQ\bot RS\Rightarrow $$
    $$c-a=b-d.......(1)$$
    $$PQ=\cfrac { 3\sqrt { 3 }  }{ 4 } $$
    $${ PQ }^{ 2 }=\cfrac { 27 }{ 16 } $$
    $$1+{ (a-c) }^{ 2 }=\cfrac { 27 }{ 16 } .....(2)$$
    $$RS=\sqrt { { (b-d) }^{ 2 }+1 } ....(3)$$
    By equation (1),(2),(3)
    $$RS=\cfrac { 3\sqrt { 3 }  }{ 4 } $$

  • Question 2
    1 / -0
    A frog is presently located at the origin $$\left( 0,0 \right)$$ in the $$xy$$-plane. It always jumps from a point with integer coordinates to a point with integer coordinates moving a distance of $$5$$ units in each jump. What is the minimum number of jumps required for the frog to go from $$\left( 0,0 \right)$$ to $$\left( 0,1 \right) $$?
    Solution
    The frog can jump to only integral coordinates and have to move $$5$$ units in each jump
    So, he must jumps from $$(0,0)$$ to $$(4,3)$$ 
    Then from $$(4,3)$$ to $$(0,6)$$  
    Finally from$$(0,6)$$ to $$(0,1)$$ covering a distance of $$5$$ unit in each jump
    So, minimum of three jumps are required
    Hence, option $$B$$ is correct

  • Question 3
    1 / -0
    Find the area (in square units) of the triangle whose vertices are $$(a, b+c), (a, b-c) $$ and $$(-a, c). $$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times |[ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] |$$
    Given the vertices of triangle,
    $$A (a,b+c) ,B(a,b-c) ,C(-a,c)$$
    Therefore, area is given by
    $$=\dfrac { 1 }{ 2 } |\left[ a\left[ b-c-c \right] +a\left[ c-b-c \right] +(-a)\left[ b+c-b+c \right]  \right]| \\ =\dfrac { 1 }{ 2 } |\left[ a(b-2c)+a(-b)-a(2c) \right]| \\ =\dfrac { 1 }{ 2 } |\left[ ab-2ac-ab-2ac \right]| =\left| \dfrac { -4ac }{ 2 }  \right| =2ac$$
  • Question 4
    1 / -0
    The angle between the lines $$ 2x+11y-7=0$$
    and $$ x+3y+5=0$$ is equal to :
    Solution
    Given lines are $$ 2x+11y-7=0$$ and $$ x+3y+5=0$$
    $$\Rightarrow y = - \dfrac {2}{11} x + \dfrac {7}{11} $$
    and $$ y = - \dfrac {1}{3} x - \dfrac {5}{3} $$
    Their, slopes are $$ m_1 = - \dfrac {2}{11} $$ and $$ m_2 = - \dfrac {1}{3} $$
    Therefore, angle between lines is 
    $$ \tan \theta = \dfrac {m_1 - m_2 }{1+m_1m_2} $$
    $$ = \dfrac {- \dfrac {2}{11} + \dfrac {1}{3} } {1 + \dfrac {2}{11} \times \dfrac {1}{3} } = \dfrac {5}{35} $$
    Thus $$  \theta = \tan^{-1}  \left( \dfrac {1}{7} \right) $$
  • Question 5
    1 / -0
    The slope of a straight line passing through A( -2, 3) is  -4/3. The points on the line that are 10 units  away from A are 
    Solution
    The equation line will be 

    $$y-3=\frac{-4}{3}(x+2)$$

    $$4x+3y=1$$

    Now, let the point $$10$$ unit away is $$(h,k)$$

    Then, 

    $$4h+3k=1$$      ------    $$(1)$$

    And 

    $$\sqrt {(h+2)^2+(k-3)^2}=10$$

    $$ {(h+2)^2+(k-3)^2}=10$$   ------   $$(2)$$

    Now, from $$(1)$$

    $$h=\frac{1-3k}{4}$$

    Put in equation $$(2)$$, we get

    $$25k^2-150k-1663=0$$

    On solving quadric equation 

    $$K=11$$ and $$k=-5$$

    Put $$k=11$$ in equation $$(1)$$

    $$h=-8$$

    And put $$k=-5$$ in equation $$(1)$$

    $$h=4$$

    Hence the points are 
    $$(-8,11),(4,-5)$$

    Hence, the correct answer is $$A$$.
  • Question 6
    1 / -0
    If D (3, -1), E (2, 6) and F (5, 7) are the vettices of the sides of $$\Delta DEF$$, the area of triangle DEF is sq. units. 
    Solution
    Area of triangle = $$\dfrac{1}{2} {x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)}$$

    Area of triangle $$DEF=|\dfrac{1}{2}(3(6-7)+2(7+1)+5(-1-6))|$$

                                        $$=|\dfrac{1}{2}(-3+16-35)|$$

                                         $$=11$$ sq. Units.
  • Question 7
    1 / -0
    Let $$P$$ be $$(5, 3)$$ and a point $$R$$ on $$y = x$$ and $$Q$$ on the x-axis be such that $$PQ + QR + RP$$ is minimum. Then the coordinates of $$Q$$ are
    Solution
    REF.Image.
    Given
    $$ P= (5,3) $$
    on x -axis
    $$Q = (x_1 ,0)$$
    R on $$ y = x $$
    $$ R = (x_{2},x_{2})$$
    Now,
    $$ PQ + QR + RP $$ is minimum 
    $$ PQ = (5-x_{1}, 3-0) ; QR = (x_{1}- x_{2}, 0-x_{2})$$
    $$ RP = (x_{2}-5, x_{2}-3)$$
    & $$ (x_{1}, x_{2}) = |PQ |+ |QR| + |RP|$$
    $$ = \sqrt{(5-x_{1})^2 + 3^2 }+ \sqrt{(x_{1}-x_{2})^2 + (-x_{2})^2} + \sqrt{(x_{2}-5)^2 + (x_{2}-3)^2}$$
    min of $$ f (x_{1},x_{2})$$
    $$ x_{2} = \dfrac{17}{5}, x_{1} = \dfrac{17}{4}$$
    $$ \therefore Q = \left ( \dfrac{17}{4} ,0\right )$$

  • Question 8
    1 / -0
    The points $$(-1,0)$$ and $$(-2,1)$$ are the two extremities of a diagonal of a parallelogram. If $$(-6,5)$$ is the third vertex, then the fourth vertex of the parallelogram is
    Solution
    Let the points of parallelogram are $$A(-2,1),B(-6,5),C(-1,0)$$ and $$D(x,y)$$
    We know that, diagonals of parallelogram bisect each other
    $$\left( \cfrac { -2-1 }{ 2 } ,\cfrac { 1+0 }{ 2 }  \right) =\left( \cfrac { x-6 }{ 2 } ,\cfrac { y+5 }{ 2 }  \right) $$
    $$\quad \Rightarrow \cfrac { -3 }{ 2 } =\cfrac { x-6 }{ 2 } ;\cfrac { 1 }{ 2 } =\cfrac { y+5 }{ 2 } $$
    $$\Rightarrow x=3;y=-4$$
    Thus the coordinates of fourth vertex of parallelogram are
    $$(3,-4)$$

  • Question 9
    1 / -0
    The point on the line $$4x+3y=5$$, which is equidistant from $$\left( 1,2 \right)$$ and $$\left( 3,4 \right) $$, is
    Solution
    Let the point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ be on the line $$4x+3y=5$$.
    $$\therefore 4{ x }_{ 1 }+3{ y }_{ 1 }=5$$                  ....(i)
    Also, we have
    $${ \left( { x }_{ 1 }-1 \right)  }^{ 2 }+{ \left( { y }_{ 1 }-2 \right)  }^{ 2 }={ \left( { x }_{ 1 }-3 \right)  }^{ 3 }+{ \left( { y }_{ 1 }-4 \right)  }^{ 2 }$$
    $$\Rightarrow { x }_{ 1 }^{ 2 }+1-2{ x }_{ 1 }+{ y }_{ 1 }^{ 2 }+4-4{ y }_{ 1 }={ x }_{ 1 }^{ 2 }+9-6{ x }_{ 1 }+{ y }_{ 1 }^{ 2 }+16-8{ y }_{ 1 }$$
    $$\Rightarrow 4{ x }_{ 1 }+4{ y }_{ 1 }=20$$
    $$\Rightarrow { x }_{ 1 }+{ y }_{ 1 }=5$$                  ....(ii)
    From equations (i) and (ii), we get
    $${ y }_{ 1 }=15$$ and $${ x }_{ 1 }=-10$$
  • Question 10
    1 / -0
    $$A=(4, 2)$$ and $$B=(2, 4)$$ are two given points and a point $$P$$ on the line $$3x + 2y + 10 = 0 $$ is given then. which of the following is true.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now