$$x\sin \alpha-y\cos\alpha =0$$
=> $$x=\dfrac{y\cos\alpha }{\sin\alpha}$$
$$x\cos\alpha+y\sin\alpha=p$$
Put $$x=\dfrac{y\cos\alpha }{\sin\alpha}$$, we get
=> $$\dfrac{y\cos^2\alpha}{\sin\alpha}+y\sin\alpha=p$$
=>$$y=p\sin\alpha$$
Similiarly, $$x=p\cos\alpha$$
$$ax+by+p=0$$
Put $$x=p\cos\alpha$$ and $$y=p\sin\alpha$$
=> $$ap\cos\alpha+bp\sin\alpha+p=0$$
=> $$a\cos\alpha+b\sin\alpha=-1$$ ---- Equation 1
Slope of $$ax+by+p=0$$, $$m_1=-\dfrac{a}{b}$$
Slope of $$x\cos\alpha+y\sin\alpha=p$$, $$m_2=-\dfrac{\cos\alpha}{\sin\alpha}$$
Also $$\tan\theta=\left|\dfrac{m_1-m_2}{1+m_1m_2}\right|$$
=> $$\tan\dfrac{\pi}{4}=\left|\dfrac{m_1-m_2}{1+m_1m_2}\right|$$
=> $$|m_1-m_2|=|1+m_1m_2|$$
=> $$\left|\dfrac{a}{b}-\dfrac{\cos\alpha }{\sin\alpha}\right|=\left|1+\dfrac{a\cos\alpha}{b\sin\alpha}\right|$$
=> $$|a\sin\alpha-b\cos\alpha|=|b\sin\alpha+a\cos\alpha|$$
=> $$|a\sin\alpha-b\cos\alpha|=1$$ ---- Equation 2
Squaring and adding equation 1 and equation 2, we get
$$(a^2\cos ^2\alpha +b^2\sin ^2\alpha +2ab\sin \alpha \cos \alpha)+(b^2\cos ^2\alpha +a^2\sin ^2\alpha -2ab\sin \alpha \cos \alpha)=1+1$$
=> $$a^2+b^2=2$$
Option $$(C)$$