Self Studies

Straight Lines Test 21

Result Self Studies

Straight Lines Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the slop of one of the lines represented by $$ax^2-6xy+y^2=0$$ is the square of the other,then the value of a is
    Solution
    $$m+m^2=6$$

    $$m^3=a$$

    $$m^3+m^6+3.m^3.6=6^3$$

    $$a^2+19a-216=0$$

    $$a=-27$$ or $$8$$
  • Question 2
    1 / -0
    Let $$A=(a_1, a_2)$$ and $$B=(b_1, b_2)$$ be two points in the plane with integer coordinates. Which one of the following is not a possible value of the distance between A and B?
    Solution
    Distance between $$A$$ and $$B$$ is =$$\sqrt {(a_1-b_1)^2+(a_2-b_2)^2}$$
    It's given that the coordinates are integer, therefore $$(a_1-b_1)^2$$ and $$(a_2-b_2)^2$$ are the squares of integer numbers.
    In options, we have 
    $$\sqrt{64}=\sqrt{8^2+1^2}$$
    $$\sqrt{74}=\sqrt{7^2+5^2}$$
    $$\sqrt{97}=\sqrt{9^2+4^2}$$
    $$\sqrt{83}$$ cannot be written in this form.
    Therefore, option C cannot the distance between A and B.

  • Question 3
    1 / -0
    If the straight line $$ax + by + p = 0$$ and $$x\cos \alpha + y \sin \alpha = p$$ enclosed an angle of $$\dfrac {\pi}{4}$$ and the line $$x\sin \alpha - y \cos \alpha = 0$$ meets them at the same point, then $$a^{2} + b^{2}$$ is
    Solution
    $$x\sin \alpha-y\cos\alpha =0$$

    => $$x=\dfrac{y\cos\alpha }{\sin\alpha}$$

    $$x\cos\alpha+y\sin\alpha=p$$

    Put $$x=\dfrac{y\cos\alpha }{\sin\alpha}$$, we get

    => $$\dfrac{y\cos^2\alpha}{\sin\alpha}+y\sin\alpha=p$$

    =>$$y=p\sin\alpha$$

    Similiarly, $$x=p\cos\alpha$$

    $$ax+by+p=0$$

    Put $$x=p\cos\alpha$$ and $$y=p\sin\alpha$$

    => $$ap\cos\alpha+bp\sin\alpha+p=0$$

    => $$a\cos\alpha+b\sin\alpha=-1$$                                                 ---- Equation 1

    Slope of $$ax+by+p=0$$, $$m_1=-\dfrac{a}{b}$$

    Slope of $$x\cos\alpha+y\sin\alpha=p$$, $$m_2=-\dfrac{\cos\alpha}{\sin\alpha}$$

    Also $$\tan\theta=\left|\dfrac{m_1-m_2}{1+m_1m_2}\right|$$

    => $$\tan\dfrac{\pi}{4}=\left|\dfrac{m_1-m_2}{1+m_1m_2}\right|$$

    => $$|m_1-m_2|=|1+m_1m_2|$$

    => $$\left|\dfrac{a}{b}-\dfrac{\cos\alpha }{\sin\alpha}\right|=\left|1+\dfrac{a\cos\alpha}{b\sin\alpha}\right|$$

    => $$|a\sin\alpha-b\cos\alpha|=|b\sin\alpha+a\cos\alpha|$$

    => $$|a\sin\alpha-b\cos\alpha|=1$$                                                         ---- Equation 2

    Squaring and adding equation 1 and equation 2, we get

    $$(a^2\cos ^2\alpha +b^2\sin ^2\alpha +2ab\sin \alpha \cos \alpha)+(b^2\cos ^2\alpha +a^2\sin ^2\alpha -2ab\sin \alpha \cos \alpha)=1+1$$

    => $$a^2+b^2=2$$

    Option $$(C)$$
  • Question 4
    1 / -0
    The distance of the point $$A(a, b, c)$$ from the x-axis is
    Solution
    $$\textbf{Step-1: Apply distance formula to get the required unknown.}$$

                     $$\text{The given point is}$$ $$(a,b,c)$$

                     $$\text{The distance of the point}$$ $$(a,b,c) $$ $$\text{from x-axis will be}$$ $$\text{the perpendicular distance from point}$$ 

                     $$(a,b,c)$$ $$\text{to x-axis whose co-ordinates will be}$$ $$(a,0,0)$$

                     $$\text{Now, we have to use the distance formula}$$

                     $$\text{Distance=}$$ $$\sqrt{(a-a)^{2}+(b-0)^{2}+(c-0)^{2}}=\sqrt{b^{2}+c^{2}}$$               $$\textbf{[Using distance formula]}$$

    $$\textbf{Hence, the correct option is B}$$
  • Question 5
    1 / -0
    $$ABC$$ is an isosceles triangle. If the coordinates of the base are $$B(1,3)$$ and $$C(-2,7)$$. The vertex $$A$$ can be
    Solution
    ABC-Isosceles triangle.
    Co-ordinates of base are $$B(1, 3)$$ and $$C(-2, 7)$$
    vertex 'A' can be any point on perpendicular bisector of BC, but not 'D'.
    Slope of BC$$=\dfrac{7-3}{-2-1}=-\dfrac{4}{3}$$
    Slope of Line(L)$$=\dfrac{-1}{\left(-\dfrac{4}{3}\right)}=\dfrac{3}{4}$$
    Mid-point of BC$$-$$D$$=\left(\dfrac{-1}{2}, 5\right)$$
    $$L: 3x-4y=3\left(-\dfrac{1}{2}\right)-4(5)$$
    $$3x-4y=-\dfrac{3}{2}-20$$
    $$6x-8y=-3-40$$
    $$6x-8y+43=0$$
    As, only $$(5/6, 6)$$ satisfies 'L'.
    So, 'A' can be $$\left(\dfrac{5}{6}, 6\right)$$.
  • Question 6
    1 / -0
    How many points $$(x, y)$$ with integral co-ordinates are there whose distance from $$(1, 2)$$ is two units?
    Solution
    $$PQ = 2\Rightarrow PQ^{2} = 4$$
    $$(x - 1)^{2} + (y - 2)^{2} = 4$$
    possibilities for integral coordinates
    $$\Rightarrow (X - 1)^{2} + (y -2)^{2} = 4 + 0$$ or
    $$= 0 + 4$$
    Check $$(1) (x - 1)^{2} = 4\ (y - 2)^{2} = 0$$
    $$\Rightarrow x - 1 = 2, -2\ ,y - 2 = 0$$
    $$x = 3, -1\ ,y = 2$$
    $$(3, 2)$$ and $$(-1, 2)$$
    check $$(2) (x - 1)^{2} = 0\ ,(y - 2)^{2} = 4$$
    $$x = 1\ ,y - 2 = 2, -2$$
    $$x = 1\ ,y = 4, y = 0$$
    $$(1, 4)$$ and $$(1, 0)$$
    Total $$4$$ integral coordinates are possible.
  • Question 7
    1 / -0
    The distance between the points $$\left( a\cos { { 48 }^{ o } } ,0 \right) $$ and $$\left( 0,a\cos { { 12 }^{ o } }  \right) $$ is $$d$$ then $${ d }^{ 2 }{ a }^{ 2 }=$$
    Solution
    Given $$A=(a\cos 48^o, 0)$$ & $$B=(0, a \cos 12^o)$$
    $$\Rightarrow d^2=(a\cos 48-0)^2+(0-a\cos 12)^2$$
    $$=a^2[\cos^248+\cos^212]$$
    $$\cos^2\theta =\dfrac{1+\cos 2\theta}{2}$$ $$\Rightarrow a^2\left[\left(\dfrac{1+\cos 96}{2}\right)+\left(\dfrac{1+\cos 24}{2}\right)\right]$$
    $$\Rightarrow a^2\left[\dfrac{2+\cos 96+\cos 24}{2}\right]$$
    $$\left[\cos A+\cos B=2\cos\left(\dfrac{A+B}{2}\right)\cos \left(\dfrac{A-B}{2}\right)\right]$$ $$\Rightarrow a^2\left[\dfrac{2+2\cos 60^o\cos 36^o}{2}\right]$$
    $$\Rightarrow \dfrac{a^2}{2}\left[2+\not{2}\times \dfrac{1}{\not{2}}\cos 36^o\right]$$
    $$d^2\Rightarrow \dfrac{a^2}{a}\left[2+\cos 36^o\right]$$
    We know $$\cos 36=\dfrac{\sqrt{5}+1}{4}$$
    $$\therefore d^2a^2=\dfrac{a^4}{2}\left[2+\dfrac{\sqrt{5}+1}{4}\right]=\dfrac{a^4}{2}\left[\dfrac{\sqrt{5}+9}{4}\right]$$
    $$\Rightarrow$$ wrong options. [If d then]
  • Question 8
    1 / -0
    The point $$P\left( x,y \right)$$ is equidistant from the points $$Q\left( c+d,d-c \right)$$ and $$R\left( c-d,c+d \right)$$ then
    Solution
    Point $$P(x,y)$$ is the equidistant from $$Q(c+d,d-x)$$ and $$R(c-d,c+d)$$
    $$\therefore PQ=PR$$
    $${ PQ }^{ 2 }={ PR }^{ 2 }$$
    $${ \left[ x-\left( c+d \right)  \right]  }^{ 2 }+{ \left[ y-\left( d-c \right)  \right]  }^{ 2 }={ \left[ x-\left( c-d \right)  \right]  }^{ 2 }+{ \left[ y-\left( c+d \right)  \right]  }^{ 2 }$$
    $${ x }^{ 2 }+{ \left( c+d \right)  }^{ 2 }-2.x\left( c+d \right) +{ y }^{ 2 }+{ \left( d-c \right)  }^{ 2 }-2.y(d-c)={ x }^{ 2 }+{ \left( c-d \right)  }^{ 2 }-2.x.\left( c-d \right) +{ y }^{ 2 }+{ \left( c+d \right)  }^{ 2 }+2.y(c+d)$$
    Or $$x(c+d)+y(d-c)=x(c-d)+y(c+d)$$
    Or $$(c+d)(x-y)=(c-d)(x+y)$$
    Or $$cx-cy+dc-dy=cx+cy-dx-dy$$
    Or $$2dx=2cy$$
    Or $$dx=cy$$
    $$\therefore $$Answer $$dx=cy$$
  • Question 9
    1 / -0
    The angle between the pair of lines whose equation is $$4{ x }^{ 2 }+10xy+m{ y }^{ 2 }+5x+10y=0$$ is
    Solution
    The angle b/w 2 line represented by $$ax^2+2hxy+by^2+2gx+2fy+c=0$$

    $$\tan\theta=\Bigg|\dfrac{2\sqrt{h^2-ab}}{a+b}\Bigg|$$

    Given the equation of line i.e. $$4x^2+10xy+my^2+5x+10y=0$$

    Compare above equation with standard equation 
    $$a=4,h=5,b=m,g=\dfrac{5}{2},f=5,c=0$$

    Hence $$\theta=\tan^{-1}\dfrac{2\sqrt{25-4m}}{m+4}$$
  • Question 10
    1 / -0
    Points $$A\left( 3,2,4 \right) ,B\left( \cfrac { 33 }{ 5 } ,\cfrac { 28 }{ 5 } ,\cfrac { 38 }{ 5 }  \right) $$, and $$C(9,8,10)$$ are given. The ratio in which $$B$$ divides $$\overline { AC } $$ is
    Solution
    $$BA=\Bigg[[(\dfrac{33}{5})^2-(3)^2]+[(\dfrac{28}{5})^2-(2)^2]+[(\dfrac{38}{5})^2-(4)^2 ]\Bigg]=\Bigg(\sqrt{(\dfrac{18}{5})^2+(\dfrac{18}{5})^2+(\dfrac{18}{5})^2}\Bigg)=\sqrt{\dfrac{972}{25}}$$ 


    $$CB=\Bigg[[9^2-(\dfrac{33}{5})^2]+[8^2-(\dfrac{28}{5})^2]+[10^2-(\dfrac{38}{5})^2 ]\Bigg]=\Bigg(\sqrt{(\dfrac{12}{5})^2+(\dfrac{12}{5})^2+(\dfrac{12}{5})^2}\Bigg)=\sqrt{\dfrac{432}{25}}
    $$

    Therefore $$\dfrac{BA}{CB}=\sqrt{\dfrac{972}{432}}=\dfrac32$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now