Self Studies

Straight Lines Test 23

Result Self Studies

Straight Lines Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the value of $$x$$ such that $$AB=BC$$ where the coordinates of A, B and C are $$(2,1)$$, $$(x,0)$$  and $$(-2,-1)$$ respectively.

    Solution
    Distance between two points $$=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$$
    Given $$ AB=BC$$
    $$\sqrt{(2-x)^{2}+(1)^{2}}=\sqrt{(x+2)^{2}+(1)^{2}}$$
                Squaring both sides
    $$(2-x)^{2}+(1)=(x+2)^{2}+(1)$$
     $$4+x^{2}-4x=x^{2}+4+4x$$
                $$x=0$$
  • Question 2
    1 / -0
    The condition that the slope of one of the lines represented by $$ax^{2} + 2hxy + by^{2} = 0$$ is twice that of the other is
    Solution
    We know that ,
    for $$ax^2+2hxy+by^2=0$$

    $$m_1+m_2=\dfrac{-2h}{b}\\m_1m_2=\dfrac ab$$

    Let the Roots be $$m,2m$$

    $$2m*m=\dfrac ab\\2m+m=3m=\dfrac{-2h}{b}\Rightarrow m=\dfrac{-2h}{3b}$$

    So, 
    $$\dfrac ab=2m^2\Rightarrow \dfrac ab=2(\dfrac{-2h}{3b})^2\Rightarrow \dfrac ab=\dfrac{8h^2}{9b^2}\Rightarrow 8h^2=9ab$$
  • Question 3
    1 / -0
    If $$(3,2)$$ and $$(-3,2)$$ are two vertices of an equilateral triangle which contains within it the origin, what are the coordinates of the third vertex ?
    Solution

    Let $$\Delta ABC$$ be the equilateral triangle, where $$AB=BC=AC$$.

     

    Vertices of this triangle be,

    $$A\left( 3,2 \right),B\left( -3,2 \right)$$ and $$C\left( x,y \right)$$.

     

    The mid-point of the side $$AB$$ is $$M\left( 0,2 \right)$$.

     $$ AB=\sqrt{{{\left( 3+3 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}} $$

     $$ AB=6\ units $$

     

    Therefore,

    $$\Rightarrow AB=BC=AC=6\ units$$

     

    Also,

    $$\Rightarrow AM=3\ units$$

     

    As two vertices are $$A\left( 3,2 \right)$$ and $$B\left( -3,2 \right)$$, so third vertex will be at $$y-$$axis.

     

    Therefore,

    $$\Rightarrow C\left( 0,y \right)$$

    It will be located below the origin as the triangle contains the origin.

     

    Now,

     $$ {{y}^{2}}={{\left( AC \right)}^{2}}-{{\left( AM \right)}^{2}} $$

     $$ {{y}^{2}}=36-9=27 $$

     $$ y=3\sqrt{3}\ units $$

     

    Therefore,

    $$\Rightarrow C\left( 0,-3\sqrt{3} \right)$$

     

    Hence, this is the required point.
  • Question 4
    1 / -0
    If $$A(a,a), B(-a,-a)$$ are two vertices of an equilateral triangle, then its third vertex is
    Solution

    The two vertices of an equilateral triangle is $$A\left( {a,a} \right)$$ and $$B\left( { - a, - a} \right)$$.

    Let the third vertex be $$C\left( {x,y} \right)$$.

    Since the triangle is an equilateral triangle, then,

    $$AC = AB = BC$$

    $$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - a} \right)}^2}}  = \sqrt {{{\left( { - a - a} \right)}^2} + {{\left( { - a - a} \right)}^2}}  = \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$

    $$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - a} \right)}^2}}  = \sqrt {{{\left( { - 2a} \right)}^2} + {{\left( { - 2a} \right)}^2}}  = \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$

    $$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - a} \right)}^2}}  = \sqrt {4{a^2} + 4{a^2}}  = \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$

    $$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - a} \right)}^2}}  = \sqrt {8{a^2}}  = \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$

    Taking first two equations,

    $$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - a} \right)}^2}}  = \sqrt {8{a^2}} $$

    Squaring both sides,

    $${\left( {x - a} \right)^2} + {\left( {y - a} \right)^2} = 8{a^2}$$

    $${x^2} + {a^2} - 2ax + {y^2} + {a^2} - 2ay = 8{a^2}$$

    $${x^2} + {y^2} - 2ax - 2ay = 6{a^2}$$                                              (1)

    Taking last two equations,

    $$\sqrt {8{a^2}}  = \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$

    Squaring both sides,

    $$8{a^2} = {\left( {x + a} \right)^2} + {\left( {y + a} \right)^2}$$

    $$8{a^2} = {x^2} + {a^2} + 2ax + {y^2} + {a^2} + 2ay$$

    $${x^2} + {y^2} + 2ax + 2ay = 6{a^2}$$                                              (2)

    From equation (1) and (2),

    $${x^2} + {y^2} - 2ax - 2ay = {x^2} + {y^2} + 2ax + 2ay$$

    $$ - 4ax = 4ay$$

    $$x =  - y$$

    Substituting the value of $$x$$ in equation (1),

    $${\left( { - y} \right)^2} + {y^2} - 2a\left( { - y} \right) - 2ay = 6{a^2}$$

    $${y^2} + {y^2} + 2ay - 2ay = 6{a^2}$$

    $$2{y^2} = 6{a^2}$$

    $${y^2} = 3{a^2}$$

    $$y = \sqrt 3 a$$

    Substituting the value of $$y$$ in $$x =  - y$$, then,

    $$x =  - \sqrt 3 a$$

    Therefore, the third vertex is $$\left( { - \sqrt 3 a,\sqrt 3 a} \right)$$.

  • Question 5
    1 / -0
    The coordinates of the point which divides the line segment joining points $$A(0 , 0)$$ and $$B(9 , 12)$$ in the ration $$1 : 2$$ are 
    Solution
    The coordinates of the point which divides the line segment joining$$ (x_{1},y_{1})$$ and $$ (x_{2},y_{2})$$ in the ratio $$m:n$$ is given by
    $$\dfrac{mx_{2}+nx_{1}}{m+n}$$
    $$(x,y)$$=$$(\dfrac{mx_{2}+nx_{1}}{m+n}$$$$\dfrac{my_{2}+ny_{1}}{m+n})$$   .       ......$$(1)$$
    Here 
    $$ (x_{1},y_{1})$$ =$$(0,0)$$
    $$ (x_{2},y_{2})$$ = $$(9,12)$$
    $$m:n=1:2$$
    Substituting these vaues in the eq $$(1)$$ ,
     we get 
    $$ (x,y)$$=$$(3,4)$$
  • Question 6
    1 / -0
    The ratio in which xy-plane divides the line segment joining $$(2,4,5)$$ and $$(3,5,-4)$$ is
    Solution
    Given points are $$(2,4,5)$$ and $$(3,5,-4)$$
    Let the be p:1 and since xy-plane divides the line segment,z-coordinate will be $$ 0$$
    the required  z-coordinate will  be  $$\dfrac{5-4{p}}{p+1}=0$$
    $$ \ p=\dfrac{5}{4}$$
    Ratio$$=5:4$$
  • Question 7
    1 / -0
    Find the value of $$x_i$$, if the distance between the points $$(x_i, 2)$$ and $$(3, 4)$$ is $$8$$.
    Solution
    we re given $$ ( x_1 , y_1 ) $$= ( xi, 2)  & $$B ( x_2,y_2)=(3,4) $$

    let d is the distance between point A & B .  d= 8

    $$ So,    d = \sqrt { (x_2 -x_1)^2 + (y_2 -y_1)^2 } $$

    $$    8   = \sqrt { (3 -x_i )^2 +(4-2)^2 } $$

    taking square on both side,

    $$ 64 = (3 -x_i)^2 + (4-2)^2 $$

    $$ 64 =  9 - 6x_i +(x_i)^2 +(2)^2 $$

    $$ (x_i)^2-6x_i - 51 = 0 $$

    now, discriminant $$ D = \sqrt { b^2 - 4ac } $$

    here $$b = -6$$ , $$a = 1$$ ,$$c= -51$$ 

    so, $$ d= \sqrt { (-6)^2 -4(1)(-51) } = \sqrt {36+ 204 } $$

    $$  d= \sqrt {240} > 0 $$

    so, 
    $$\displaystyle x_i = \frac { -b \pm \sqrt d }{2a} = \frac { -(-6) \pm  \sqrt {240} }{ 2(1) } = \frac { 6 \pm   4 \sqrt {15}  }{2} $$

    $$ x_i = 3 \pm 2 \sqrt {15} $$
  • Question 8
    1 / -0
    The coordinates of a point on Y-axis which are at a distance of $$5\sqrt 2 $$ from the point $$P(3,-2,5)$$ is -
    Solution

    $${\rm{since point is an y - axis}}$$

    $${\rm{its x and z coordinate is 0}}$$

    $${\rm{Let pt}}{\rm{. on y - axis be A (0,a,0)}}$$

    $${\rm{PA = }}\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} $$

    $$5\sqrt2  = \sqrt {{{( - 3)}^2} + {{(a + 2)}^2} + {{(0 - 5)}^2}} $$

    $$5\sqrt2  = \sqrt {a + {a^2} + 4 + 4a + 25} $$

    $$5\sqrt2  = \sqrt {{a^2} + 4a + 38} $$

    $$25 \times 2 = {a^2} + 4a + 38$$

    $${a^2} + 4a - 12 = 0$$

    $${a^2} + 6a - 2(a + b) = 0$$

    $$a = 2,a =  - 6$$

    $$co - ordinate{\rm{ of point (0,2,0)and(0, - 6,0)}}$$

  • Question 9
    1 / -0
    Find the area of the triangle formed by joining the mid points of the sides of the triangle whose vertices are $$(0.-1), (2, 1) and (0, 3)$$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Also, we know $$\\Area\>of\>triangle\>=4\times\>of\>triangle\>formed\>using\>mid-point\>\\=4\times(\frac{1}{2})[x_1(y_2-y_3)+x_2(y_3+y_1)+x_3(y_1-y_2)]\\=2[0+2(3-1)+0]=8sq\>unit$$
  • Question 10
    1 / -0
    C is a point on the line segment joining A(-3, 4) and B (2, 1) such that AC = 2 BC then coordinates of C are
    Solution

    AC = 2 BC

    $${{AC} \over {BC}} = {2 \over 1}$$

    $$x = {{2{x^2} + 1 \times \left( { - 3} \right)} \over {1 + 2}} = {{4 - 3} \over 3} = {1 \over 3}$$

    $$y = {{2 \times 1 + 1 \times 4} \over {2 + 1}} = {{2 + 4} \over 3} = 2$$

    $$C\left( {{1 \over 3},2} \right)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now