The two vertices of an equilateral triangle is $$A\left(
{a,a} \right)$$ and $$B\left( { - a, - a} \right)$$.
Let the third vertex be $$C\left( {x,y} \right)$$.
Since the triangle is an equilateral triangle, then,
$$AC = AB = BC$$
$$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y -
a} \right)}^2}} = \sqrt {{{\left( { - a
- a} \right)}^2} + {{\left( { - a - a} \right)}^2}} = \sqrt {{{\left( {x + a} \right)}^2} +
{{\left( {y + a} \right)}^2}} $$
$$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y -
a} \right)}^2}} = \sqrt {{{\left( { -
2a} \right)}^2} + {{\left( { - 2a} \right)}^2}}
= \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$
$$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y -
a} \right)}^2}} = \sqrt {4{a^2} +
4{a^2}} = \sqrt {{{\left( {x + a}
\right)}^2} + {{\left( {y + a} \right)}^2}} $$
$$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y -
a} \right)}^2}} = \sqrt {8{a^2}} = \sqrt {{{\left( {x + a} \right)}^2} +
{{\left( {y + a} \right)}^2}} $$
Taking first two equations,
$$\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y -
a} \right)}^2}} = \sqrt {8{a^2}} $$
Squaring both
sides,
$${\left( {x - a} \right)^2} + {\left( {y - a}
\right)^2} = 8{a^2}$$
$${x^2} + {a^2} - 2ax + {y^2} + {a^2} - 2ay = 8{a^2}$$
$${x^2} + {y^2} - 2ax - 2ay = 6{a^2}$$
(1)
Taking last
two equations,
$$\sqrt {8{a^2}}
= \sqrt {{{\left( {x + a} \right)}^2} + {{\left( {y + a} \right)}^2}} $$
Squaring both
sides,
$$8{a^2} = {\left( {x + a} \right)^2} + {\left( {y +
a} \right)^2}$$
$$8{a^2} = {x^2} + {a^2} + 2ax + {y^2} + {a^2} + 2ay$$
$${x^2} + {y^2} + 2ax + 2ay = 6{a^2}$$ (2)
From equation
(1) and (2),
$${x^2} + {y^2} - 2ax - 2ay = {x^2} + {y^2} + 2ax +
2ay$$
$$ - 4ax = 4ay$$
$$x = - y$$
Substituting
the value of $$x$$ in equation (1),
$${\left( { - y} \right)^2} + {y^2} - 2a\left( { - y}
\right) - 2ay = 6{a^2}$$
$${y^2} + {y^2} + 2ay - 2ay = 6{a^2}$$
$$2{y^2} = 6{a^2}$$
$${y^2} = 3{a^2}$$
$$y = \sqrt 3 a$$
Substituting
the value of $$y$$ in $$x = - y$$ ,
then,
$$x = - \sqrt
3 a$$
Therefore, the
third vertex is $$\left( { - \sqrt 3 a,\sqrt 3
a} \right)$$ .