Self Studies

Straight Lines Test 25

Result Self Studies

Straight Lines Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    An aeroplane flying horizontally $$1$$, above the ground is observed at an elevation of $$60$$ and after $$10$$ seconds the elevation is observed to be $$30$$. The uniform speed of the aeroplane in $$/h$$ is-
    Solution
    At $$t=0$$ plane is at A and at $$t=10$$, the plane is at B. Distance covered$$=AB$$
    In $$\triangle AHO$$
    $$\tan { 60° } =\cfrac { OH }{ AH } $$
    $$AH=\cfrac { (1000) }{ \sqrt { 3 }  } m$$
    In $$\triangle BHO$$
    $$\tan { 30° } =\cfrac { OH }{ BH } $$
    $$BH=\sqrt { 3 } \left( 1000 \right) m$$
    $$\therefore AB=BH-AH=\left( \sqrt { 3 } -\cfrac { 1 }{ \sqrt { 3 }  }  \right) \left( 1000 \right) m$$
    $$=\cfrac { 2 }{ \sqrt { 3 }  } .1000m$$
    Speed$$=\cfrac { Distance }{ Time } $$
    Speed$$=\cfrac { 2 }{ \sqrt { 3 }  } \times \cfrac { 1000 }{ 10 } ㎧$$
    $$=\cfrac { 200 }{ \sqrt { 3 }  } ㎧$$
    $$=\cfrac { 200 }{ \sqrt { 3 }  } \times \cfrac { 18 }{ 5 } ㎞{ h }^{ -1 }$$
    $$=40\times 6\sqrt { 3 }$$
    Speed$$=240\sqrt { 3 } ㎞{ h }^{ -1 }$$

  • Question 2
    1 / -0
    Points $$A(\sqrt{2}, 4)$$, $$B(6, \sqrt{3})$$ and C are collinear. If B is the midpoint of line segment AC, approximately calculate the (x, y) coordinates of point C.
    Solution
    We are given point $$C(x, y)$$
    Point $$B$$ is the midpoint of line segment $$AC$$
    i.e $$B(6,\sqrt{3})=B\left(\dfrac{\sqrt{2}+x}{2}, \dfrac{4+y}{2}\right)$$
    So, $$\dfrac{\sqrt{2}+x}{2}=6$$ & $$\dfrac{4+y}{2}=\sqrt{3}$$
    $$\sqrt{2}+x=12$$ & $$4+y=2\sqrt{3}$$
    $$x=12-\sqrt{2}$$ & $$y=2\sqrt{3}-4$$
    $$x=12-1.41$$ & $$y=2(1.73)-4$$
    $$x=10.59$$          $$y=-0.54$$
    $$C(x,y)=C(10.59, -0.54)$$
  • Question 3
    1 / -0
    A straight line L through the point $$(3,-2)$$ is inclined at an angle $$60$$ to the line $$\sqrt { 3 } x+y=1$$. If L also intersects the x-axis, the equation of L is-

    Solution
    $$\sqrt{3}x+y=1\implies m=\tan \theta =-\sqrt{3}\implies $$ this line makes an angle of $$120^{\circ}$$ with x-axis.

    Since $$ L$$ makes an angle $$60^{\circ}$$ with this line.

    $$\implies L$$ must be either x- axis $$($$ which is not correct because given $$L$$ intersect the x-axis$$)$$ or a line making an angle $$60^{\circ}$$ with the x-axis.

    $$\implies m=\tan 60^{\circ}=\sqrt{3}$$ 

    $$L:y=m{x}+c$$

    $$L:y=\sqrt{3}x+c$$
     
    $$L$$ passes through $$(3,-2)\implies -2=3\sqrt{3}+c\implies c=-2-3\sqrt{3}$$

    $$L:y-\sqrt{3}x+2+3\sqrt{3}=0$$ 
  • Question 4
    1 / -0
    A straight line is drawn through the point $$p\ (2,3)$$ and is inclined at an angle of $$30^{o}$$ with the $$x-$$axis, the co-ordinates of two points on it at a distance of $$4$$ from $$p$$ is/are
    Solution
    The parametric points of a line is given as $$(x_1\pm r\cos \theta,y_1\pm r\sin \theta)\\(2\pm 4\cos 30,3\pm 4 \sin 30)\\\left(2\pm 4\dfrac{\sqrt3}{2},3\pm 4\dfrac 12\right)\\(2\pm2\sqrt3,3\pm 2)\\(2+2\sqrt3,5),(2-2\sqrt3,1) $$
  • Question 5
    1 / -0
    If the vertices of a triangle are $$(1,2),(4,-6)$$ and $$(3,5)$$, then its area is
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Therefore, area of required triangle is given by
    Area $$ = \dfrac{1}{2} \times [ 1 (-6 - 5) + 4(5 - 2) + 3(2 + 6) ] $$
    $$=\dfrac{1}{2}[-11+12+24]$$
    $$=\dfrac{1}{2}\times25$$
    $$=\dfrac{25}{2}\ sq.unit$$
  • Question 6
    1 / -0
    The points given are $$(1, 1)$$, $$(-2, 7)$$ and $$(3, 3)$$.Find distance between the points.
    Solution
    Let the points be
    $$A(1,1)$$,  $$B(-2,7)$$,  $$C(3,3)$$
    Distance of $$AB=\sqrt { { \left( 2-1 \right)  }^{ 2 }+{ \left( 7-1 \right)  }^{ 2 } } $$
                                $$=\sqrt { 9+36 } =\sqrt { 45 } $$
    Distance of $$BC=\sqrt { { \left( 3+2 \right)  }^{ 2 }+{ \left( 3-7 \right)  }^{ 2 } } $$
                                $$=\sqrt { 25+16 } =\sqrt { 49 } =7$$
    Distance of $$AC=\sqrt { { \left( 3-1 \right)  }^{ 2 }+{ \left( 3-1 \right)  }^{ 2 } } =\sqrt { 8 } $$
  • Question 7
    1 / -0
    The points $$(a, b), (-a, -b), (b\sqrt{3}, -a\sqrt{3})$$ are the vertices of a triangle which is
    Solution

  • Question 8
    1 / -0
    A line passing through $$(3,4)$$ meets the axis $$\overline {OX} $$ and $$\overline {OY} $$ at $$A$$ and $$B$$ respectively. Find the minimum area of triangle OAB. 
    Solution

  • Question 9
    1 / -0
    The intercepts on the straight $$y=mx$$ by the line $$y=2$$ and $$y=6$$ is less than $$5$$, then $$m$$ belongs to
    Solution

  • Question 10
    1 / -0
    $$ABC$$ is an isosceles triangle. If the coordinates of the base are $$B(1,3)$$ and $$C(-2,7)$$, the coordinates of vertex $$A$$ can be
    Solution
    $$AB=AC$$
    $$\sqrt{(x-1)^2+(y-3)^2}=\sqrt{(x-(-2))^2+(y-7)^2}$$
    $$(x-1)^2+(y-3)^2=(x+2)^2+(y-7)^2$$
    $$=2x+1-6y+9=4x+4-14y+49$$
    $$\Rightarrow 6x-8y+43=0$$
    By substituting $$\left(\dfrac{5}{6}, 6\right)$$
    $$\Rightarrow \not{6}\times \dfrac{5}{\not{6}}-8\times 6+43$$
    $$\Rightarrow 0$$
    Hence $$\left(\dfrac{5}{6}, 6\right)$$ is answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now