Consider the given point
$$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( 0,0 \right) $$
$$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,\sqrt{3}
\right) $$
$$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( p,q \right) $$
Then,
We know that it is an equilateral triangle,
$$ AB=BC $$
$$ \Rightarrow \sqrt{{{\left( {{x}_{1}}-{{x}_{2}}
\right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}=\sqrt{{{\left(
{{x}_{2}}-{{x}_{3}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{3}} \right)}^{2}}} $$
$$ \Rightarrow \sqrt{{{\left( 0-3 \right)}^{2}}+{{\left(
0-\sqrt{3} \right)}^{2}}}=\sqrt{{{\left( 3-p \right)}^{2}}+{{\left( \sqrt{3}-q
\right)}^{2}}} $$
$$ \Rightarrow
\sqrt{12}=\sqrt{9+{{p}^{2}}-6p+3+{{q}^{2}}-2\sqrt{3}q} $$
$$ \text{Squaring both side and we get,} $$
$$ \Rightarrow 12={{p}^{2}}+{{q}^{2}}-6p-2\sqrt{3}q+12 $$
$$ \Rightarrow
{{p}^{2}}+{{q}^{2}}-6p-2\sqrt{3}q=0$$ ....... (1)
Again,
$$ AB=CA $$
$$ \Rightarrow \sqrt{{{\left( {{x}_{1}}-{{x}_{2}}
\right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}=\sqrt{{{\left(
{{x}_{3}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{3}}-{{y}_{1}} \right)}^{2}}} $$
$$ \Rightarrow \sqrt{{{\left( 0-3 \right)}^{2}}+{{\left(
0-\sqrt{3} \right)}^{2}}}=\sqrt{{{\left( p-0 \right)}^{2}}+{{\left( q-0
\right)}^{2}}} $$
$$ \Rightarrow \sqrt{12}=\sqrt{{{p}^{2}}+{{q}^{2}}} $$
$$ \text{squaring both side and we get,} $$
$${{p}^{2}}+{{q}^{2}}=12$$…… (2)
By equation (1) and (2) to, and we get,
$$ 12-6p-2\sqrt{3}q=0 $$
$$ \Rightarrow 6p+2\sqrt{3}q=12 $$
$$ \Rightarrow 3p+\sqrt{3}q=6 $$
$$ \Rightarrow 3p=6-\sqrt{3}q $$
$$ \Rightarrow p=\dfrac{6-\sqrt{3}q}{3} $$
Put the value of p in equation (2) and we get,
$$ {{p}^{2}}+{{q}^{2}}=12 $$
$$ \Rightarrow {{\left( \dfrac{6-\sqrt{3}q}{3}
\right)}^{2}}+{{q}^{2}}=12 $$
$$ \Rightarrow 36+3{{q}^{2}}-12\sqrt{3}q+9{{q}^{2}}=108$$
$$ \Rightarrow 12{{q}^{2}}-12\sqrt{3}q=72 $$
$$\begin{align}
$$ \Rightarrow 12\left( {{q}^{2}}-\sqrt{3}q-6 \right)=0 $$
$$ \Rightarrow {{q}^{2}}-\sqrt{3}q-6=0 $$
$$ \Rightarrow {{q}^{2}}-2\sqrt{3}q+\sqrt{3}q-6=0 $$
$$ \Rightarrow q\left( q-2\sqrt{3} \right)+\sqrt{3}\left(
q-2\sqrt{3} \right)=0 $$
$$ \Rightarrow \left( q-2\sqrt{3} \right)\left( q+\sqrt{3}
\right)=0 $$
Then, $$q=2\sqrt{3},\,\,q=-\sqrt{3}$$
Now, According to given question,
$$ q={{q}_{1}}+{{q}_{2}} $$
$$ q=2\sqrt{3}-\sqrt{3} $$
$$ q=\sqrt{3} $$
Hence, this is the
answer.