Self Studies

Straight Lines Test 26

Result Self Studies

Straight Lines Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If a circle $$ { x }^{ 2 }+{ y }^{ 2 }=20$$ meet the parabola $$ { y }^{ 2 }=8x$$ at $$P$$ and $$Q$$. Then $$PQ=$$__ 
    Solution

  • Question 2
    1 / -0
    The coordinates of base $$BC$$ of an isosceles triangles $$ABC$$ are given by $$B (1,3)$$ and $$C (-2,7)$$. Which of the following points can be the possible coordinates of the vertex $$A$$ ? 
    Solution
    Given that ABC is an isosceles triangle.
    The two vertices are B (1,3) = (x₂,y₂) and C (-2,7) = (x₂,y₂)
    We have to find the co-ordinates of the vertex A
    Since the triangle is an isosceles triangle So,
    AB = AC   ............. (1)
    And also vertex A lies on y-axis.
    Let A be (0,y) = (x₁,y₁)
    Equation (1) ⇒ AB = AC
    √ [(x₂ - x₁)² + (y₂ - y₁)²] = √ [(x₂ - x₁)² + (y₂ - y₁)²]
    (1 - 0)² + (3 - y)² = (- 2 - 0)² + (7 - y)²
    1 + (3 - y)² = 2 + (7 - y)²
    1 + 9 + y² - 6y = 2 + 49 + y² -14y
    10 - 6y = 51 - 14y
    14y - 6y = 51 - 10
    9y = 41
    $$y = \dfrac{41}{9}$$
    y = 4.6
    So, co-ordinates of the vertex A are A (0,4.6)

  • Question 3
    1 / -0
    Point P(2,3) lines on the $$4x + 3y = 17$$. Then find the co-ordinated of points farthest from the line which are at 5 units distance from the P.
    Solution
    Let point $$(x,y)$$ from the line.
    $$\left|\dfrac{4x+3y-17}{\sqrt{4^2+3^2}}=5\right |$$
    $$\Rightarrow \boxed{4x+3y-17=\pm 25}$$
    but given point Only $$(A)$$ option is satisfying line.
    So, Answer should be $$(A)$$.

  • Question 4
    1 / -0
    The sum of the lengths of tangents and subtangent at a point of $$y=a\log{(x^{2}-a^{2})}$$,$$(a>0)$$ is porportional to
    Solution
    $$y=a\log(x^2-a^2).a>0.$$
    $$\dfrac{dy}{dx}=\dfrac{2ax}{x^2-a^2}$$
    Length of tangent $$=y\sqrt{1+\dfrac{1}{\left(\dfrac{dy}{dx}\right)^2}}$$
                                   $$= \sqrt{1+\dfrac{(x^2-a^2)^2}{(2ax)^2}}$$
                                    $$=\dfrac{|y(x^2+a^2)|}{|2ax|}$$
    Length of subtangent $$=\left|y\dfrac{dx}{dy}\right|=\left|y\times \dfrac{1}{\dfrac{dy}{dx}}\right|$$
                                         $$=\dfrac{y(x^2-a^2)}{|2ax|}$$
    Sum $$=\dfrac{|x^2y|}{|2ax|}=\dfrac{|xy|}{2a}$$
    Proportional to $$|xy|$$
  • Question 5
    1 / -0
    The points $$(-1,5),(-2,-3),(5,1),(6,9)$$ taken on order are the vertices of a
    Solution
    $$A(-1,5)$$,$$B(-2,-3)$$,$$C(5,1)$$ and $$D(6,9)$$
    Slopes of sides of quadrilateral =>
    $${ m }_{ ab }=8\\ { m }_{ bc }=\cfrac { 4 }{ 7 } \\ { m }_{ cd }=8\\ { m }_{ da }=\cfrac { 4 }{ 7 } $$
    We see, $${ m }_{ ab }=8={ m }_{ cd }$$ & $${ m }_{ bc }={ m }_{ da }=\cfrac { 4 }{ 7 } $$=> ABCD is  Parallelogram as opposite sides are Parallel.
  • Question 6
    1 / -0
    Find the point on the x-axis which is equidistant from $$(2, -5)$$ and $$(-2, 9)$$.
    Solution

  • Question 7
    1 / -0
    If the points (0,0), $$(3,\sqrt{3})$$ ,(p,q) from an equilateral triangle and $$q_{1},q_{2}$$ are the two values of q then $$q_{1}+q_{2}$$ =
    Solution

    Consider the given point

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( 0,0 \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( 3,\sqrt{3} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( p,q \right) $$

    Then,

    We know that it is an equilateral triangle,

    $$ AB=BC $$

    $$ \Rightarrow \sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}=\sqrt{{{\left( {{x}_{2}}-{{x}_{3}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{3}} \right)}^{2}}} $$

    $$ \Rightarrow \sqrt{{{\left( 0-3 \right)}^{2}}+{{\left( 0-\sqrt{3} \right)}^{2}}}=\sqrt{{{\left( 3-p \right)}^{2}}+{{\left( \sqrt{3}-q \right)}^{2}}} $$

    $$ \Rightarrow \sqrt{12}=\sqrt{9+{{p}^{2}}-6p+3+{{q}^{2}}-2\sqrt{3}q} $$

    $$ \text{Squaring both side and we get,} $$

    $$ \Rightarrow 12={{p}^{2}}+{{q}^{2}}-6p-2\sqrt{3}q+12 $$

    $$ \Rightarrow {{p}^{2}}+{{q}^{2}}-6p-2\sqrt{3}q=0$$ ....... (1)

    Again,

    $$ AB=CA $$

    $$ \Rightarrow \sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}=\sqrt{{{\left( {{x}_{3}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{3}}-{{y}_{1}} \right)}^{2}}} $$

    $$ \Rightarrow \sqrt{{{\left( 0-3 \right)}^{2}}+{{\left( 0-\sqrt{3} \right)}^{2}}}=\sqrt{{{\left( p-0 \right)}^{2}}+{{\left( q-0 \right)}^{2}}} $$

    $$ \Rightarrow \sqrt{12}=\sqrt{{{p}^{2}}+{{q}^{2}}} $$

    $$ \text{squaring both side and we get,} $$

    $${{p}^{2}}+{{q}^{2}}=12$$…… (2)

    By equation (1) and (2) to, and we get,

    $$ 12-6p-2\sqrt{3}q=0 $$

    $$ \Rightarrow 6p+2\sqrt{3}q=12 $$

    $$ \Rightarrow 3p+\sqrt{3}q=6 $$

    $$ \Rightarrow 3p=6-\sqrt{3}q $$

    $$ \Rightarrow p=\dfrac{6-\sqrt{3}q}{3} $$

    Put the value of p in equation (2) and we get,

    $$ {{p}^{2}}+{{q}^{2}}=12 $$

    $$ \Rightarrow {{\left( \dfrac{6-\sqrt{3}q}{3} \right)}^{2}}+{{q}^{2}}=12 $$

    $$ \Rightarrow 36+3{{q}^{2}}-12\sqrt{3}q+9{{q}^{2}}=108$$

    $$ \Rightarrow 12{{q}^{2}}-12\sqrt{3}q=72 $$

    $$\begin{align}

    $$ \Rightarrow 12\left( {{q}^{2}}-\sqrt{3}q-6 \right)=0 $$

    $$ \Rightarrow {{q}^{2}}-\sqrt{3}q-6=0 $$

    $$ \Rightarrow {{q}^{2}}-2\sqrt{3}q+\sqrt{3}q-6=0 $$

    $$ \Rightarrow q\left( q-2\sqrt{3} \right)+\sqrt{3}\left( q-2\sqrt{3} \right)=0 $$

    $$ \Rightarrow \left( q-2\sqrt{3} \right)\left( q+\sqrt{3} \right)=0 $$

    Then, $$q=2\sqrt{3},\,\,q=-\sqrt{3}$$

    Now, According to given question,

    $$ q={{q}_{1}}+{{q}_{2}} $$

    $$ q=2\sqrt{3}-\sqrt{3} $$

    $$ q=\sqrt{3} $$

    Hence, this is the answer.

  • Question 8
    1 / -0
    Three points $$\left( {0,0} \right),\left( {3,\sqrt 3 } \right),\left( {3,\lambda } \right)$$ from an equilateral triangle, then $$\lambda $$ is equal to 
    Solution
    Given:An equilateral triangle $$ABC$$ whose coordinates are $$A\left(0,0\right),\,B\left(3,\sqrt{3}\right)$$ and $$C\left(3,\lambda\right)$$
    Since the triangle is equilateral, we have
    $${AB}^{2}={AC}^{2}$$
    So,$${\left(3-0\right)}^{2}+{\left(\sqrt{3}-0\right)}^{2}={\left(3-0\right)}^{2}+{\left(\lambda-0\right)}^{2}$$
    $$\Rightarrow\,{\left(\sqrt{3}-0\right)}^{2}={\left(\lambda-0\right)}^{2}$$
    $$\Rightarrow\,{\lambda}^{2}=3$$
    $$\therefore\,\lambda=\pm \sqrt{3}$$

  • Question 9
    1 / -0
    Find the area of the triangle formed by the mid points of sides of the triangle whose vertices are $$(2, 1)$$, $$(-2, 3)$$, $$(4, -3)$$.
  • Question 10
    1 / -0
    Area of the triangle formed by $$(x_{1,}y_{1}),(x_{2},y_{2}), (3y_{2},(-2y_{1}))$$
    Solution

    We have,

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( {{x}_{2}},{{y}_{2}} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 3{{y}_{2}},-2{{y}_{1}} \right) $$

    We know that the area of triangle is

    $$ Area\,of\,\Delta ABC=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}+2{{y}_{1}} \right)+{{x}_{2}}\left( -2{{y}_{1}}-{{y}_{1}} \right)+3{{y}_{2}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}{{y}_{2}}+2{{x}_{1}}{{y}_{1}}-3{{x}_{2}}{{y}_{1}}+3{{y}_{2}}{{y}_{1}}-3{{y}_{2}}^{2} \right] $$

    Hence, the is the answer

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now