Self Studies

Straight Lines Test 28

Result Self Studies

Straight Lines Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the equation $$ax^{2}-6xy+y^{2}  + 2gx+2fy+c=0$$ represents a pair of line whose slopes are $$m$$ and $$m^{2}$$, then sum of all possible values of $$a$$  is-
    Solution
    $$ax^{2}-6xy+y^{2}+2gx+2fy+c=0$$
    $$=(y+3x+c_{1})(y+3^{2}x+c_{2})$$
    $$y^{2}+m^{2}xy+c_{2}y+mxy+m^{3}x^{2}+mxc_{2}+c_{1}y+c_{1}m^{2}x+c_{2}c_{2}$$
    $$a= m^{3}$$
    $$m^{2}+m=-6\Rightarrow m^{2}+m-6=0$$
    $$a=8, -27$$  $$m^{2}+3m-2m-6=0$$
    $$m(m+3)-2(m+3)=0$$
    $$(m-2)(m+3)=0$$
    $$m= 2,-3$$
    sum of total possible of a
    = -19

  • Question 2
    1 / -0
    The diagonal passing through origin of a quadrilateral formed by $$x=0, y=0, x+y=1 $$ and $$6x+y=3$$ is
    Solution
    Let us find the Point opposite to origin in the Quadrilateral which will be the intersection of $$x+y=1, 6x+y=3$$

     Hence, Solving the Above Equation Simulataneously
    $$x=\dfrac{2}{5},y=\dfrac35$$

    Now, The Slope of Required Diagonal 
    $$=\dfrac{\dfrac35-0}{\dfrac25-0}=\dfrac32$$

    Hence, Equation of Diagonal 
    $$(y-0)=\dfrac32(x-0)\Rightarrow 2y=3x\Rightarrow 3x-2y=0$$
  • Question 3
    1 / -0
    If the line $$3x-y+1=0$$ and  $$x-2y+3=0$$ are equally inclined to the line $$y=mx$$, then the value of $$m$$ is given by
    Solution

  • Question 4
    1 / -0
    The shortest distance of the point $$(h,k)$$ from both the axes are
    Solution
    Given the point is $$(h,k).$$

    Now foot of the perpendicular

    from $$(h,k)$$ on x-axis is $$(h,0)$$and

    that on y-axis is $$(0,k)$$

    Now the shortest distance between

    $$ (h,k)$$ and $$(h,0) = \sqrt{(h-h)^{2}+(k-0)^{2}}$$

    $$ = |k| $$ = the shortest distance of $$(h,k)$$ from x- axis.

    Again the shortest distance between
    $$(h,k)$$ and $$(0,k)$$ is

    $$ \sqrt{(h-0)^{2}+(k-k)^{2}} = \left | h \right |$$ = The shortest distance of $$(h,k)$$ from y-axis.
  • Question 5
    1 / -0
    One vertex of a square $$ABCD$$ is $$A(-1, 1)$$ and the equation of one diagonal $$BD$$ is $$3x+y-8=0$$ then $$C$$=
    Solution
    Let point $$C (x,y)$$.
    Slope of $$AC = \dfrac{{y - 1}}{{x + 1}}$$
    and slope of $$BD = 3x + y - 8 = 0$$
    $$\begin{array}{l} y=-3x+8\to \left( i \right)  \\ \Rightarrow Slope\, \, of\, \, BD\, \, is\, -3 \\ \Rightarrow AC\bot BD \\ \Rightarrow \dfrac { { y-1 } }{ { x+1 } } \times -3=-1 \\ \Rightarrow 3\left( { y-1 } \right) =x+1 \\ \Rightarrow 3y-3=x+1 \\ \Rightarrow 3y-x=4\to \left( { ii } \right)  \end{array}$$
    Solving equation (i) and (ii) 
    $$\begin{array}{l} \Rightarrow \dfrac { x }{ { 20 } } =\dfrac { y }{ { 20 } } =\dfrac { 1 }{ { 20 } }  \\ \therefore x=2,y=2 \\ \Rightarrow then,\, \, by\, \, { { using } }\, \, mid\, formula,\dfrac { { x-1 } }{ 2 } =2,x=5 \\ \dfrac { { y+1 } }{ 2 } =2,y=3 \end{array}$$

  • Question 6
    1 / -0
    If the area of triangle formed by the points $$(2a,b),(a+b,2b+a)$$ and $$(2b,2a)$$ be $$\lambda$$ then the area of the triangle whose vertices are $$(a+b,a-b), (3b-a,b+3a)$$ and $$(3a-b,3b-a)$$ will be
    Solution
    Area of $$ \triangle  \,= \dfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right |$$
    Given area of triangle whose vertices are $$ (2a,b), (a+b,2b+a), (2b,2a)$$ is $$ \lambda $$
    $$\therefore \lambda  = \dfrac{1}{2}\left | 2a(2b+a-2a)+(a+b)(2a-b)+2b(b-2b-a) \right |  $$
    $$ \lambda  = \dfrac{1}{2}\left | 4ab+2a^{2}-4a^{2}+2a^{2}-ab+2ab-b^{2}+2b^{2}-4b^{2}-2ab \right |$$
    $$ \lambda  = \dfrac{1}{2}\left | 3ab - 3b^{2} \right | $$ __ (1)
    Now area of triangle whose vertices are $$ (a+b,a-b), (3b-a,b+3a), (3a-b,3b-a)$$ is given by
    Area $$ = \dfrac{1}{2}\left | (a+b)(b+3a-3b+a)+(3b-a)(3b-a-a+b)+(3a-b)(a-b-b-3a) \right |$$
    $$ = \dfrac{1}{2}\left | (a+b) (-2b+4a)+(3b-a)(4b-2a)+(3a-b)(-2a-2b) \right |$$
    $$ = \dfrac{1}{2}\left | -2ab+4a^{2}-2b^{2}+4ab+12b^{2}-6ab-4ab+2a^{2}-6a^{2}-6ab+2ab+2b^{2} \right |$$
    $$ = \dfrac{1}{2}\left | 12b^{2}-12ab \right |$$
    $$ = \dfrac{4}{2}\left | -(3ab-3b^{2}) \right |$$
    $$ = 4.\dfrac{1}{2}\left | 3ab-3b^{2} \right |$$
    $$ = 4 \lambda .$$
  • Question 7
    1 / -0
    The area of the triangle vertices $$(1,0),(7,0)$$ and $$(4,4)$$ is ___ square units.
    Solution

  • Question 8
    1 / -0
    A triangle with vertices $$(4,0),(-1,-1),(3,5)$$ is:
    Solution

    $$\textbf{Step -1: Finding all the side lengths.}$$

                      $$\text{Let }(4,0)\text{ be point }A,\;(-1,-1)\text{ be point }B,\;(3,5)\text{ be point }C$$


                      $$AB=\sqrt{(4-(-1))^2+(0-(-1))^2}=\sqrt{5^2+1^2}=\sqrt{26}$$


                      $$BC=\sqrt{(-1-3)^2+(-1-5)^2}=\sqrt{(-4)^2+(-6)^2}=\sqrt{52}$$


                      $$CA=\sqrt{(3-4)^2+(5-0)^2}=\sqrt{(-1)^2+(5)^2}=\sqrt{26}$$


                      $$\therefore AB=CA\text{ Hence, the triangle is isosceles.}$$


    $$\textbf{Step -2: Checking whether the triangle is right angled.}$$


                      $$AB^2=26$$


                      $$BC^2=52$$


                      $$CA^2=26$$


                      $$\Rightarrow AB^2+CA^2=26+26=52=BC^2$$


                      $$\text{Hence, the triangle is right angled.}$$


    $$\textbf{Hence, the triangle with vertices (4,0), (-1,-1), (3,5) is isosceles and right angled.}$$

  • Question 9
    1 / -0
    If in a parallelogram $$ABCD$$, the coordinate of $$A, B$$ and $$C$$ are respectively $$(1, 2), (3, 4)$$ and $$(2, 5)$$, then the equation of the diagonal $$BD$$ is:-
    Solution

    Let let  coordinates of D are $$X$$ and $$Y$$ then $$X+3=3,Y+4=7$$

    $$X=0,Y=3$$

    Only above coordinates statisfied by $$5x-3y+9=0$$

  • Question 10
    1 / -0
    In the given figure (not drawn to scale), the coordinates of P, Q and R are (3, 0) (0, 5) and (0, -5) respectively. Find the area of $$\Delta PQR$$.

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now