Self Studies

Straight Lines ...

TIME LEFT -
  • Question 1
    1 / -0

    The coordinates of two consecutive vertices $$A$$ and $$B$$ of a regular hexagon $$ABCDEF$$ are $$(1, 0)$$ and $$(2, 0)$$, respectively. The equation of the diagonal $$CE$$ is

  • Question 2
    1 / -0

    One diagonal of a square is along the line $$8x - 15 y =0$$ and one of its vertices is $$(1, 2)$$. Then the equations of the sides of the square passing through this vertex are

  • Question 3
    1 / -0

    The diagonals of a parallelogram $$PQRS$$ are along the lines $$x + 3y = 4$$ and $$6x - 2y = 7$$. Then $$PQRS$$ must be a

  • Question 4
    1 / -0

    The ends of a quadrant of a circle have the coordinates (1, 3) and (3, 1). Then the centre of such a circle is

  • Question 5
    1 / -0

    If four points are $$A(6,3),B(-3,5),C(4,-2)$$ and $$P(x,y),$$ then the ratio of the areas of $$\triangle PBC$$ and $$\triangle ABC$$ is:

  • Question 6
    1 / -0

    $$\mathrm{P}_{1},\ \mathrm{P}_{2},\ldots\ldots.,\ \mathrm{P}_{\mathrm{n}}$$ are points on the line $$y=x$$ lying in the positive quadrant such that $$\mathrm{O}\mathrm{P}_{\mathrm{n}}=n\cdot\mathrm{O}\mathrm{P}_{\mathrm{n}-1}$$, where $$\mathrm{O}$$ is the origin. If $$\mathrm{O}\mathrm{P}_1=1$$ and the coordinates of $$\mathrm{P}_{\mathrm{n}}$$ are $$(2520\sqrt{2},2520\sqrt{2})$$, then $$n$$ is equal to

  • Question 7
    1 / -0

    If $$A(-2,4)$$, $$B(0,0)$$ and $$C(4,2)$$ are the vertices of a $$\Delta ABC$$, then find the length of median through the vertex A.

  • Question 8
    1 / -0

    The vertices of a triangle are $$A(3,4)$$, $$B(7,2)$$ and $$C(-2, -5)$$. Find the length of the median through the vertex A.

  • Question 9
    1 / -0

    Directions For Questions

    The area of a triangle whose vertices are $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ is given by $$\displaystyle \Delta =\frac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 },{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 },{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 },{ y }_{ 2 } \right)  \right| $$. The points $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear of $$\displaystyle \Delta =0$$

    ...view full instructions

    Determine the area of the triangle whose vertices are $$\displaystyle \left( \frac { 1 }{ 2 } ,\frac { -1 }{ 2 }  \right) ,\left( 2,\frac { -1 }{ 2 }  \right) $$ and $$\displaystyle \left( 2,\frac { \sqrt { 3 } -1 }{ 2 }  \right) $$.

  • Question 10
    1 / -0

    Find the equation of the line that passes through the points $$(-1,0)$$ and $$(-4,12)$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now