We know that the slope $$m$$ of a line passing through two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ is $$m=\dfrac{y_2-y_1}{x_2-x_1}$$.
Let $$(m,-9)=(x_1,y_1)$$ and $$(7,m)=(x_2,y_2)$$, then the slope of the line can be determined as:
$$m=\dfrac { y_{ 2 }-y_{ 1 } }{ x_{ 2 }-x_{ 1 } } \\ \Rightarrow m=\dfrac { m-(-9) }{ 7-m } \\ \Rightarrow m=\dfrac { m+9 }{ 7-m } \\ \Rightarrow m(7-m)=m+9$$
$$\Rightarrow { -m }^{ 2 }+7m=m+9\\ \Rightarrow { m }^{ 2 }-7m+m+9=0\\ \Rightarrow { m }^{ 2 }-6m+9=0\\ \Rightarrow { (m-3) }^{ 2 }=0\\ \Rightarrow m-3=0\\ \Rightarrow m=3$$
Therefore, the points are $$(3,-9)$$ and $$(7,3)$$.
We also know that the equation of the line passing through a point $$(x_1,y_1)$$ is $$(y-y_1)=m(x-x_1)$$ where $$m$$ is the slope of the line.
Thus, the equation of the line passing through the point $$(7,3)$$ is as follows:
$$(y-y_{ 1 })=m(x-x_{ 1 })\\ \Rightarrow (y-3)=3(x-7)\\ \Rightarrow y-3=3x-21\\ \Rightarrow 3x-21-y+3=0\\ \Rightarrow 3x-y-18=0\\ \Rightarrow 3x-y=18$$
Now, put $$x=0$$ in the above equation to get the y-intercept as:
$$(3\times 0)-y=18\\ \Rightarrow 0-y=18\\ \Rightarrow y=-18$$
Hence, the y-intercept of the line is $$y=-18$$.