Self Studies

Straight Lines Test 33

Result Self Studies

Straight Lines Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if the points A(z),B(-z) and C(z+1) are vertices of an equilateral triangle then ---- test question
    Solution

  • Question 2
    1 / -0
    Area of a triangle whose vertices are $$(a\cos \theta ,b\sin \theta ),(-a\sin \theta ,b\cos \theta)$$ and $$(-a\cos \theta ,-b\sin \theta )$$ is-
    Solution

  • Question 3
    1 / -0
    Two sides of a rhombus are along the lines, $$x-y+1=0$$ and $$7x-y-5=0$$. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus?
    Solution

  • Question 4
    1 / -0
    If three lines $$x-3y=p,ax+2y=q$$ and $$ax+y=r$$ form a right angled triangle, then 
    Solution

  • Question 5
    1 / -0
    If the tangent at $$\theta =\frac { \pi  }{ 4 } $$ to the curve $$x=a\cos ^{ 3 }{ \theta  } ,y=a\sin ^{ 3 }{ \theta  } $$ meets the x and y axes in A and B then the area of the triangle OAB is
    Solution

  • Question 6
    1 / -0
    Area of a triangle whose vertices are $$ (a \cos \theta, b \sin \theta),(-a \sin \theta, b \cos \theta)  $$ and$$ (-a \cos \theta,-b \sin \theta)  $$ is $$ - $$
    Solution

  • Question 7
    1 / -0
    If the area of triangle formed by the points (2a , b) (a + b , 2b + a) and (2b , 2a) be $$\lambda$$ , then the area of the triangle whose vertices are (a + b , a b) , (3b a , b + 3a) and (3a b , 3b a) will be
    Solution

  • Question 8
    1 / -0
    A line L passes through the points $$ (1,1)  $$and $$ (2,0)  $$ and another line $$  L^{\prime}  $$ passes through $$ \left(\frac{1}{2}, 0\right)  $$ and perpendicular to L.Then the area of the triangle formed by the lines $$  L, L^{\prime}  $$ and $$  y- $$ axis, is
    Solution
    $$\textbf{Hint: Product of slopes of two perpendicular lines is -1.}$$

    $$\textbf{Step 1: Find the equation of two lines.}$$

                    $$\text{Using two points form, equation of line L is given by,}$$

                    $$\Rightarrow y-0=\dfrac{0-1}{2-1}(x-2)$$

                    $$\Rightarrow y=-(x-2)$$

                    $$\Rightarrow x+y=2.......(1)$$

                    $$\text{Slope of L = - 1}$$

                    $$\text{L and }$$ $$\text{L' are perpendicular to each other}$$ 

                    $$\text{Slope of L' =}$$ $$\dfrac{-1}{-1}=1$$

                    $$\text{Using point slope form, equation of line L' is given by,}$$

                    $$\Rightarrow y-0=1(x-\dfrac{1}{2})$$

                    $$\Rightarrow 2x-2y=1 ......(2)$$

    $$\textbf{Step 2: Find the required area.}$$

                    $$\text{Let, L and L' intersect each other at B.}$$

                    $$\text{Solving eq(1) and eq(2) , we get,}$$

                    $$\Rightarrow A(x,y)=\left(\dfrac{5}{4},\dfrac{3}{4}\right)$$

                    $$\text{The intersection points of lines L and L' with y-axis are B(0,2) and C}$$$$\left(0,-\dfrac{1}{2}\right)$$ $$\text{respectively.}$$

                    $$\text{Using distance formula,}$$
                    $$AB=\sqrt{\left(0-\dfrac{5}{4}\right)^2+\left(2-\dfrac{3}{4}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{And,}$$
                    $$AC=\sqrt{\left(\dfrac{5}{4}-0\right)^2+\left(\dfrac{3}{4}+\dfrac{1}{2}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{Area of the triangle}$$ $$=\dfrac{1}{2}\times AB\times AC=\dfrac{1}{2}\times\dfrac{5}{4}\sqrt2\times\dfrac{5}{4}\sqrt2\ sq.unit $$

                                                                                          $$=\dfrac{25}{16}\ sq.unit$$

    $$\textbf{Hence, the correct option is D.}$$
  • Question 9
    1 / -0
    The area of the triangle formed by the lines $$x=0;y=0$$ and $$x\sin { { 18 }^{ 0 } } +y\cos { { 36 }^{ 0 } } +1=0$$ is 
    Solution

  • Question 10
    1 / -0
    If $$P , Q$$ are two points on the line $$3 x + 4 y + 15 = 0$$ such that $$O P = O Q = 9$$ then the area of $$\Delta O P Q$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now