Self Studies

Straight Lines Test -8

Result Self Studies

Straight Lines Test -8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The points ( - a , - b ) , ( 0 , 0 ) , ( a , b ) and (a2,ab) are

    Solution

    consider the points (a,b),(0,0),(-a,-b)

    It is clear the (0,0) is the midpoint of (a,b) and (-a,-b)

    This implies that these three points are collinear

    Now consider the points,

    (a,b),(a2,ab) and (-a,-b)

    If three points are collinear then the area if the triangle formed by these points is zero

    That is 1/2[x1(y2-y3) +x2(y3-y1) + x3(y1-y2) = 0

    Substituting the values

    1/2[a(a +b)+a2(-b-b) +(-a)(b-ab)]

    on expanding and simplifying we get the value to be zero

    Hence these points are collinear.

  • Question 2
    1 / -0

    The locus of a point, whose abscissa and ordinate are always equal is

    Solution

    The abscissa is equal to the ordinate implies x = y

    Hence the locus is x-y=0

  • Question 3
    1 / -0

    The ortho centre of the triangle formed by lines xy = 0 and x + y = 1 is :

    Solution

    Given xy=0 and x+y=1, indicates that the straight line passes through (1,0) and (0,1). Hence it is a right angled triangle whose vertex is origin. Therefore the orthocenter is also at the origin (0,0). this is one of the properties of right angled triangle whose vertex is origin.
     

  • Question 4
    1 / -0

    In a ΔABC, if A is the point ( 1, 2 ) and equations of the median through B and C are respectively x + y = 5 and x = 4 , then B is

    Solution

    Let F be the midpoint on AC

    Hence the coordiate of F is (x1+1)/2 and (5-x1+2)/2

    This point lies on x=4

    Therefore (x1+1)/2 = 4

    Therefore x1 = 7 

    Therefore y = 5-7 = -2

    Hence the coordiates of B is (7,-2)

  • Question 5
    1 / -0

    The point on the axis of y which is equidistant from ( - 1 , 2 ) and ( 3 , 4 ) is

    Solution

    Let (0,y) be the point on Y axis which is equidistant from the points (-1,2) and (3,4)

    By applying the distance formula,

    (0+1)2 +(y-2)2 = (3-0)2 +(4-y)2

    on simplifying we get

    4y = 20

    Therefore y = 5

    Hence the point on the y axis is (0,5)

  • Question 6
    1 / -0
    A circle passes through the points $$(2, 3)$$ and $$(4, 5)$$. If its centre lies on the line, $$y - 4x + 3 = 0$$, then its radius is equal to
    Solution
    Equation of the line through the given points is $$y-3 = x-2 \Rightarrow x-y+1=0$$. 

    Equation of the perpendicular line through the midpoint $$(3,4)$$ is $$x+y-7=0$$. 

    This intersects the given line at the center of the circle. So, the center of the circle is found to be $$(2,5)$$. 

    Clearly, the radius is then$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} =$$  $$\sqrt{(2-2)^2+(3-5)^2} = 2$$ units. 

    So the answer is option D.
  • Question 7
    1 / -0
    The points A(-4, -1), B(-2, -4), C(4, 0) and D(2, 3) are the vertices of a-
    Solution
    For a rectangle, the opposite sides need to be equal and diagonals also have to be equal.

    Now by using 

    Distance Formula $$=\sqrt{ { \left( {x_2}-{ { x_1 } } \right)  }^{ 2}+{ \left( {y_2 }-{ y_1  } \right)  }^{ 2 } } $$

    Here coordinates of $$A$$ are $$x_1$$ and $$y_1$$ 

    and coordinates of $$B$$ are $$x_2$$ and $$y_2$$

    Similarly for other coordinates also.

    Length  $$AB=\sqrt{ { \left( {-2}+{ { 4 } } \right)  }^{ 2}+{ \left( {- 4 }+{ 1  } \right)  }^{ 2 } } $$

                         $$=\sqrt { 13 } $$

    Length  $$BC=\sqrt{ { \left( {4}+{ { 2 } } \right)  }^{ 2}+{ \left( { 0 }+{ 4 } \right)  }^{ 2 }} $$

                         $$=\sqrt { 52 } $$


    Length   $$CD=\sqrt { { \left( {2}-{ { 4} }\right)  }^{ 2 }+{ \left( { 3 }-{ 0 }\right)  }^{ 2 } } $$

                         $$=\sqrt { 13 } $$


    Length   $$DA=\sqrt { { \left( {-4}-{ { 2} }\right)  }^{ 2 }+{ \left( { -1 }+{ 3 }\right)  }^{ 2 } } $$

                         $$=\sqrt { 52 } $$


    Diagonal $$AC=\sqrt { { \left( {4}+{ { 4 } }\right)  }^{ 2 }+{ \left( { 0 }+{ 1 }\right)  }^{ 2 } } $$


                         $$=\sqrt { 65 } $$


    Diagonal $$BD=\sqrt { { \left( {2}+{ { 2 } }\right)  }^{ 2 }+{ \left( { 3 }+{ 4 }\right)  }^{ 2 } } $$


                         $$=\sqrt { 65 } $$

    ABCD are the vertices of a rectangle since $$AB = DC$$ and $$AD = BC$$, also diagonal $$AC = BD$$.
  • Question 8
    1 / -0
    Slope of the line parallel to y-axis is.
    Solution
    Slope of a line $$=m=\tan { \theta  } $$
    where $$\theta$$ is the angle made by the line with the $$x-$$axis.
    For a line parallel to $$y-$$axis ,$$\theta =\dfrac { \pi  }{ 2 } $$
    $$\therefore m=\tan { \dfrac { \pi  }{ 2 }  } =$$undefined
  • Question 9
    1 / -0
    Area of a triangle formed by the points A(5, 2), B(4, 7) and C(7, -4) is _____.
    Solution

    Area of a triangle ABC = $$ \frac { 1 }{ 2 } \left|[ x_{ 1 }\left( y_{ 2 }-y_{ 3 }

    \right) +x_{ 2 }\left( y_{ 3 }-y_{ 1 } \right) +x_{ 3 }\left( y_{ 1 }-y_{ 2 }

    \right)  \right]|$$

    Substituting the given coordinates, we have

    =$$ \frac { 1 }{ 2 } \left[ 5 \left(7+4) \right) -\left( 4+2\right) +7\left( 2-7) \right)  \right]$$

    $$ =\frac { 1 }{ 2 } \left( 5 ( 11) +4\times( -6)
    +7\times( -5)\right)$$

    $$ =\frac { 1 }{ 2 } \left[(55) - ( 24) - ( 35)  \right]$$

    $$ =\frac { 1 }{ 2 } \times |-4| = 2$$ square units.

  • Question 10
    1 / -0
    Distance between $$(2, 3)$$ and $$(4, 1)$$ is ____
    Solution
    Given, $$A(x_1,y_1)=(2,3), B(x_2,y_2)=(4,1)$$
    Using distance formula,
    $${L}_{1}=\sqrt{({x}_{2}-{x}_{1})^2+({y}_{2}-{y}_{1})^2}$$
    $$=\sqrt {(4-2)^2+(1-3)^2}$$
    $$=\sqrt {4+4}$$
    $$=\sqrt {8}$$
    $$=2\sqrt2$$
    Therefore, distance between points $$(2,3)$$ and $$(4,1)$$ is $$2\sqrt2$$ units.
  • Question 11
    1 / -0
    $$A(0, 0), B(7, 2), C(7, 7)$$ and $$D(2, 7)$$ are the vertices of a quadrilateral. The respective slopes of diagonals $$AC$$ and $$BD$$ are 
    Solution
    The slope of a line passing through the point $$( { x }_{ 1 },{ y }_{ 1 })$$ and $$( { x }_{ 2 },{ y }_{ 2 })$$ is given by 
    $$m=\dfrac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } }$$
    Given :  $$A(0 , 0), B (7, 2), C (7, 7)$$ and $$D (2, 7)$$ are the vertices of quadrilateral
    $$AC$$ and $$BD$$ are diagonals of a quadrilateral
    Then, slope of diagonal $$AC$$ is 
    $$m_{AC} = \dfrac{7 - 0}{7 - 0}$$
    $$\implies m_{AC} = \dfrac{7}{7}$$
    $$\therefore\ m_{AC} = 1$$
    Similarly, slope of $$BD$$ is 
    $$m_{BD} = \dfrac{7 - 2}{2 - 7}$$
    $$\implies m_{BD} = \dfrac{5}{-5}$$
    $$\therefore\ m_{BD} = -1$$.
    Hence, the slopes of diagonals $$AC$$ and $$BD$$ are $$1$$ and $$-1$$ respectively.
  • Question 12
    1 / -0

    Let $$\mathrm{P}(\mathrm{x}_{1},\mathrm{y}_{1})\mathrm{b}\mathrm{e}$$ any point on the cartesian plane then match the following lists:
     
     LIST - I     LIST - II
     $$\mathrm{A})$$ The distance from $$\mathrm{P}$$ to X-axis1) $$0$$
     $$\mathrm{B})$$ The distance from $$\mathrm{P}$$ to Y-axis2) $$|\mathrm{y}_{1}|$$
     $$\mathrm{C})$$ The distance from $$\mathrm{P}$$ to origin is  3) $$\sqrt{x_{1}^{2}+y_{1}^{2}}$$ 
     4)$$ |x_{1}|$$                                   
    Solution
    $$(A)=\ |y_{1}|\rightarrow 2 $$

    $$(B)= |x_{1}| \rightarrow 4 $$

    $$(C)= \sqrt{x_{1}^{2}+y_{1}^{2}}\rightarrow 3$$
  • Question 13
    1 / -0
    If A and B are the points $$(-6,7)$$ and $$(-1,-5)$$ respectively, then the distance 2AB is equal to
    Solution
    The distance between two points can be found by the equation
    AB $$=\sqrt { ({ x }_{ 2 }-{ x }_{ 1 })^{ 2 }+({ y }_{ 2 }-{ y }_{ 1 })^{ 2 } } $$
    here point $$A(-6,7)$$ and $$B(-1,-5)$$
    $$\therefore$$ AB  $$=\sqrt { (-1+6)^{ 2 }+(-5-7)^{ 2 } } =\sqrt { 169 } =13$$
    $$\therefore$$ $$2AB = 2 \times 13 = 26$$
  • Question 14
    1 / -0
    The points $$(-2, -1), (1, 0),(4, 3),$$ and $$(1, 2)$$ are the vertices 
    Solution

    $$To\quad identify-\\ whether\quad ABCD\quad is\quad a\quad (i)\quad parallelogram,\quad (ii)\quad rectangle,\quad (iii)\quad square,\quad \\ (iv)\quad scalene\quad one.\\ Solution-\\ (i)\quad We\quad know\quad that\quad in\quad a\quad parallelogrm\quad the\quad diagonals\quad bisect\quad each\quad \\ other\quad i.e\quad the\quad mid\quad points\quad of\quad AC\quad \& \quad BD\quad are\quad same.\\ Let\quad the\quad mid\quad point\quad of\quad AC\quad be\quad P(x,y).\\ Applying\quad mid\quad point\quad theorem,\\ P(x,y)=\left( \dfrac { { x }_{ 1 }+{ x }_{ 3 } }{ 2 } ,\dfrac { { y }_{ 1 }+{ y }_{ 3 } }{ 2 }  \right) =\left( \dfrac { -2+4 }{ 2 } ,\dfrac { -1+3 }{ 2 }  \right) =(1,1).\\ Again\quad \\ let\quad the\quad mid\quad point\quad of\quad BD\quad be\quad Q(p,q).\\ Applying\quad mid\quad point\quad theorem,\\ Q(p,q)=\left( \dfrac { { x }_{ 2 }+{ x }_{ 4 } }{ 2 } ,\dfrac { { y }_{ 2 }+{ y }_{ 4 } }{ 2 }  \right) =\left( \dfrac { 1+1 }{ 2 } ,\dfrac { 0+1 }{ 2 }  \right) =(1,1).\\ \therefore \quad P(x,y)=Q(p,q)\\ \Longrightarrow the\quad mid\quad points\quad of\quad AC\quad \& \quad BD\quad are\quad same.\\ So\quad ABCD\quad is\quad a\quad parallelogram.\\ (ii)\quad If\quad the\quad diagonals\quad of\quad the\quad parallelogram\quad ABCD\quad are\quad equal\quad \\ then\quad it\quad is\quad a\quad rectangle.\\ i.e\quad AC=BD.\\ Applying\quad distance\quad formula,\\ AC=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 3 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 3 } \right)  }^{ 2 } } =\sqrt { { \left( -2-4 \right)  }^{ 2 }+{ \left( -1-3 \right)  }^{ 2 } } units=2\sqrt { 13 } units.\\ BD=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 4 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-y_{ 4 } \right)  }^{ 2 } } =\sqrt { { \left( 1-1 \right)  }^{ 2 }+{ \left( 0-2 \right)  }^{ 2 } } units=2units.\\ \therefore \quad AC\neq BD.\quad \\ So\quad ABCD\quad is\quad not\quad a\quad rectagle.\\ Consequently,\quad it\quad is\quad not\quad a\quad square.\\ Ans-\quad Option\quad A.\\  $$ 

  • Question 15
    1 / -0
    The area of a triangle whose vertices are $$(a, c+a), (a, c) $$ and $$(-a, c-a) $$ are 
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$
    Hence, area of the triangle with given vertices is $$ \left| \frac { { a }(c-c+a)+a(c-a-c-a)-a(c+a-c) }{ 2 }  \right|  = \left| \frac { { a }^{ 2 }-2{ a }^{ 2 }-{ a }^{ 2 } }{ 2 }  \right|  = { a }^{ 2 } $$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now