Self Studies

Conic Sections Test - 11

Result Self Studies

Conic Sections Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The point (3,4) is the focus and $$2x-3y+5=0$$ is the directrix of a parabola .Its latus rectum is 
    Solution
    $$4a=2$$ (distance from focus to directrix)

    $$2=\dfrac{\left | 6-12+5 \right |}{\sqrt{4+9}}=\dfrac{2}{13}$$
  • Question 2
    1 / -0
    The circle with radius $$1$$ and centre being foot of the perpendicular from $$(5, 4)$$ on y-axis, is?
    Solution
    Foot  of perpendicular of  (5,4) on y-axis is $$(0,4)$$
    Therefore the equation of circle with radius $$1cm$$ is
    $${ (x-0) }^{ 2 }+{ (y-4) }^{ 2 }=1$$
    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }-8y+16=1$$
    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }-8y+15=0$$
  • Question 3
    1 / -0
    Equation of the circle with centre on y-axis and passing through the points $$(1,0),(1,1)$$ is:
    Solution
    Let the centre of the circle be $$(0,k)$$.
    Then, the equation of the circle is $$(x-0)^2+(y-k)^2=r^2$$
    Circle passes through the points $$(1,0)$$ and $$(1,1)$$.

    Thus, $$1+k^2=r^2....(1)$$ and 

    $$1+(1-k)^2=r^2\Rightarrow 2+k^2-2k=r^2.....(2)$$

    $$Eq. (1) - Eq.(2)$$ We get

    $$2k-1=0$$

    Solving these equations, we get, $$k=\dfrac{1}{2}$$ and $$r^2=\dfrac{5}{4}$$

    Thus, the required equation of the circle is :
    $$x^2+(y-\dfrac{1}{2})^2=\dfrac{5}{4}$$ i.e., $$x^2+y^2-y-1=0$$
  • Question 4
    1 / -0
    Centres of the three circles
    $${x}^{2}+{y}^{2}-4x-6y-14=0$$ 
    $${x}^{2}+{y}^{2}+2x+4y-5=0$$ and
    $${x}^{2}+{y}^{2}-10x-16y+7=0$$. The centres of the circles are:
    Solution
    $${x^2} + {y^2} - 4x - 6y - 14 = 0$$    ---(i)
    $${x^2} + {y^2} + 2x + 4y - 5 = 0$$   ---(ii)
    $${x^2} + {y^2} - 10x - 16y + 7 = 0$$   ---(iii)
    centre of the circle (i) $${c_1} = \left( { - g, - f} \right) = \left( {2,3} \right)$$
    centre of the circle (ii) $${c_2} = \left( { - g, - f} \right) = \left( { - 1, - 2} \right)$$
    centre of the circle (iii) $${c_3} = \left( { - g, - f} \right) = \left( {5,8} \right)$$
    Now,       $${c_1}{c_2} = \sqrt {{{\left( {2 + 1} \right)}^2} + {{\left( {3 + 2} \right)}^2}}  = \sqrt {34} $$
                   $${c_2}{c_3} = \sqrt {{{\left( {5 + 1} \right)}^2} + {{\left( {8 + 2} \right)}^2}}  = 2\sqrt {34} $$
                    $${c_1}{c_3} = \sqrt {{{\left( {5 - 2} \right)}^2} + {{\left( {8 - 3} \right)}^2}}  = \sqrt {34} $$
    Since $${c_1}{c_2} + {c_1}{c_3} = {c_2}{c_3}$$
    Therefore $${c_1}$$,$${c_2}$$ and $${c_3}$$ collinear.
  • Question 5
    1 / -0
    The radius of the circle centred at $$(4,5)$$ and passing through the centre of the circle $${x}^{2}+{y}^{2}+4x+6y-12=0$$ is
    Solution
    Let the center $$A(4,5)$$
    $$x^2+y^2+4x+6y-12=0$$
    On comparing with it
    $$x^2+y^2+2gx+2fy+c=0$$
    $$g=2,f=3,c=-12$$
    center of the circle $$=(-g,-f)=(-2,-3)$$
    Then required radius of the circle \
    $$=\sqrt{(4+2)^2+(5+3)^2}=10$$
  • Question 6
    1 / -0
    The centre of the circle $$x^2+y^2+10x-20y+100=0$$ is 
    Solution
    Given the equation of the circle is
    $$x^2+y^2+10x-20y+100=0$$
    or, $$x^2+10x+25+y^2-20y+100=25$$
    or, $$(x+5)^2+(y-10)^2=5^2$$
    From this equation it is clear that the centre is $$(-5,10)$$.
  • Question 7
    1 / -0
    which of the following equations represents a parabola 
    Solution

    We know that the general equation of parabola is

    $$ {{y}^{2}}=4ax $$

    $$ {{y}^{2}}=-4ax $$

    $$ {{x}^{2}}=4ax $$

    $$ {{x}^{2}}=-4ax $$

     From option (a),

    $${{\left( x-y \right)}^{3}}=3$$

    It is not represent the parabola.

     From option (b),

    $$ \dfrac{x}{y}-\dfrac{y}{x}=0 $$

    $$ {{x}^{2}}={{y}^{2}} $$

    It is not represent the parabola.

     From option (c),

    $$ \dfrac{x}{y}+\dfrac{4}{x}=0 $$

    $$ {{x}^{2}}+4y=0 $$

    $$ {{x}^{2}}=-4y $$

    So, this is represented the parabola.

     From option (d),

    $${{\left( x+y \right)}^{3}}+3=0$$

    It is not represent the parabola.

     

    Hence, option c represents the parabola.

  • Question 8
    1 / -0
    The equation of the circle passing through $$(3, 6)$$ and whose centre is $$(2, -1)$$ is 
    Solution
    Let the equation be $$x^2 + y^2 + fx + gy + d = 0$$ with centre =$$(-\cfrac{-f}{2} , -\cfrac{g}{2})$$
    Hence, $$f = -4 , g = 2$$
    Equation becomes  = $$x^2+ y^2 - 4x +2y+d = 0$$
    Putting x = 3 y = 6 in the above equation we get
    $$9+36-12+12+d = 0$$
    $$\implies d = -45$$
    $$equation = x^2+y^2-4x+2y-45 = 0$$
  • Question 9
    1 / -0
    Find the equation of the circle : 
    Centered at $$(3,-2)$$ with radius $$4$$. 
    Solution
    The center radius form equation of circle is $$(x-h)^2+(y-k)^2=r^2$$, where $$(h,k)$$ is the center and $$r$$ is the radius.
    Here, $$(h,k)\equiv(3,-2)$$ and $$r=4$$
    $$\therefore$$ Equation of circle: - $$(x-3)^2+(y-(-2))^2=4^2\Rightarrow x^2+9-6x+y^2+4+4y=16\Rightarrow x^2+y^2-6x+4y=3$$
  • Question 10
    1 / -0
    Centre of circle whose normal's are $$x^{2}-2xy-3x+6y=0$$, is 
    Solution
    $${x}^{2} - 2xy - 3x + 6y = 0$$

    $$\Rightarrow \; \left( x - 3 \right) \left( x - 2y \right) = 0$$

    Hence, $$x = 3$$ and $$x = 2y$$ are two normals.

    The intersection point of these two normals will be the centre of the circle.
    $$\therefore$$ for $$x = 3$$,

    $$\Rightarrow$$$$y = \cfrac{x}{2} = \cfrac{3}{2}$$

    Hence, the intersection point is $$\left( 3, \cfrac{3}{2} \right)$$.
    Hence, the centre of the given circle is $$\left( 3, \cfrac{3}{2} \right)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now