Self Studies

Conic Sections Test - 13

Result Self Studies

Conic Sections Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The centre of the circle given by $$\mathbf { r } \cdot ( \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } ) = 15 \text { and } | \mathbf { r } - ( \mathbf { j } + 2 \mathbf { k } ) | = 4 ,$$
    Solution
    $$\begin{array}{l} The\, equation\, of\, line\, pas\sin  g\, through\, centre \\ \vec { i } +2\vec { k } \, and\, normal\, to\, the\, given\, plane \\ \vec { r } =\vec { j } +2\vec { k } +\lambda \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right) \, \, \, \, \, \, -----\left( 1 \right)  \\ This\, plane\, meets\, the\, plane\, at\, a\, po{ { int } }\, for\, which \\ \left[ { \left( { \vec { j } +2\vec { k }  } \right) +\lambda \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right)  } \right] \left( { \vec { i } +2\vec { j } +2\vec { k }  } \right) =15 \\ \Rightarrow 6+9\lambda =15 \\ \Rightarrow 9\lambda =9 \\ \therefore \lambda =1 \\ substituting\, value\, of\, \lambda \, in\, eq{ u^{ n } }\left( 1 \right)  \\ \vec { r } =\vec { j } +2\vec { k } +\vec { i } +2\vec { j } +2\vec { k }  \\ \Rightarrow \vec { r } =\vec { i } +3\vec { j } +4\vec { k }  \\ \therefore Centre\, is\, \left( { 1,\, 3,\, 4 } \right)  \end{array}$$

    Hence, option $$B$$ is the correct answer.
  • Question 2
    1 / -0
    The equation $${ x }^{ 2 }+{ y }^{ 2 }=9$$ meets x-axis at 
    Solution
    $$x^2+y^2=9$$ 
    The equation meets x-axis if the y-coordinate is $$0$$
    So $$x^2+0=9\\x^2=9\\x=\sqrt9\\x=\pm 3$$
    So the point is $$(\pm 3,0)$$
  • Question 3
    1 / -0
    Which is not represented by quadratic equation ?
    Solution
    Equation of circle is given by:
    $$x^2+y^2+2gx+2fy+c$$
    Equation of straight line is given by:
    $$y=mx+c$$
    Equation of parabola is given by:
    $$(y-k)^2=4p(x-h)^2$$
    Equation of hyperbola is given by:
    $$\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1$$
    Hence, we can see from the above equations that only equation of a straight line is not represented by quadratic equation.

  • Question 4
    1 / -0
    Find the area of $$x^2+y^2=49$$
    Solution
    Th eequation $$x^2+y^2=49$$ describes a circle with $$7$$ as radius 
    So the area is given as $$\pi r^2\\\dfrac{22}{7}\times 7^2=154$$
  • Question 5
    1 / -0
    If the  the hyperbola $$\frac { { x }^{ 2 } }{ 4 } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$$ passses though $$(4,3)$$
    Solution
    Equation of hyer bola is $$\dfrac{x^2}{4}-\dfrac{y^2}{b^2}=1$$ passes through 
    $$(4,3)$$
    So $$\dfrac{4^2}{4}-\dfrac{3^2}{b^2}=1\\4-\dfrac{9}{b^2}=1\\ \dfrac{9}{b^2} =3\implies b^2=3$$
  • Question 6
    1 / -0
    Radius of the circle $$2x^2+2y^2+8x+4y-3=0$$ is
    Solution
    Formula,

    $$r=\sqrt{g^2+f^2-c}$$

    From given, we have,

    $$2g=8\Rightarrow g=4$$

    $$2f=4\Rightarrow f=2$$

    $$c=-3$$

    $$r=\sqrt{4^2+2^2-(-3)}=\sqrt{23}$$
  • Question 7
    1 / -0
    The equation $$\dfrac {x^{2}}{2-r}+\dfrac {y^{2}}{r-5}+1=0$$ represents an ellipse, if
    Solution
    Given $$\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0$$ represents a ellipse
    $$\implies \dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}=-1$$
    $$\implies \dfrac{x^2}{r-2}+\dfrac{y^2}{5-r}=1$$
    Since this equation is an ellipse so $$r-2>0,5-r>0\implies 2<r<5$$
  • Question 8
    1 / -0
    Find the value of a if $$y^2=4ax $$ pases through $$(8,8)$$
    Solution
    Given point $$(8,8)$$
    Given equation $$y^2=4ax$$
    $$\implies 8^2=4a(8)\\64=32a\\a=\dfrac{64}{32}\\a=2$$
  • Question 9
    1 / -0
    Find the Center of circle $$x^2+y^2-4x-8x+25=0$$
    Solution
    The general equation of  center of circle $$x^2+y^2+2gx+2fy+c=0$$ is $$(-g,-f)$$

    So the center of circle $$x^2+y^2-4x,-8x+25=0$$ is $$(2,4)$$  
  • Question 10
    1 / -0
    The equation of the circle passing through $$(2,0)$$ and $$(0,4)$$ and having the minimum radius is ______________.
    Solution
    Equation of circle with centre (a,b) and radius r,
    $$\rightarrow (x-a)^2 + (y-b)^2 = r^2$$

    For the circle to have minimum radius, given points must be diametric points,
    So, Centre of circle = $$(\dfrac{2+0}{2},\dfrac{0+4}{2}) = (1,2)$$
    Radius of circle = $$\sqrt{(1-0)^2 + (2-4)^2} = \sqrt{5}$$

    So, The equation of circle is $$(x-1)^2+(y-2)^2 = 5$$
    $$\rightarrow x^2+y^2-2x-4y=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now