Self Studies

Conic Sections Test - 14

Result Self Studies

Conic Sections Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The locus of a point which moves such that the sum of the squares of its distances from three vertices of a triangle ABC is constant is a circle
    whose centre is at the
    Solution
    $$AP^{2}+AB^{2}+PC^{2}=C$$
    $$(x-x_{1})^{2}+(y-y_{1})^{2}+(x-x_{2})^{2}-(y-y_{2})^{2}+(x-x_{3})^{2}+(y-y_{3})^{2}=c$$
    $$3x^{2}-(2x_{1}+2x_{2}+2x_{3})x+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+3y^{2}-2(y_{1}+y_{2}+y_{3})+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=c$$
    $$x^{2}+y^{2}-\frac{2}{3}(x_{1}+x_{2}+x_{3})x-\frac{2}{3}(y_{1}+y_{2}+y_{3})c+(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-c)=0$$
    So, center of this circle is $$(\dfrac{x_{1}+x_{2}+x_{3}}{3},\dfrac{y_{1}+y_{2}+y_{3}}{3}),$$
    centroid of triangle is a center of that circle.

  • Question 2
    1 / -0
    The lines 2x-3y $$=5$$ and 3x-4y $$=7$$ diameters of a circle having area as $$154$$ units. Then the equation of the circle is:
    Solution
    $$2x-3y=5----(1)$$
    $$3x-4y=7----(2)$$
    are diameter of circle so, point of intersection is centre of circle.
    from (1) & (2), $$x=1, y=-1$$
    $$\therefore $$ area of circle is $$154$$
    $$=\pi r^{2}=154$$
    $$r^{2}=\dfrac{7}{22}\times154$$
    $$=\dfrac{7\times14}{2}$$
    $$r^{2}=49$$
    $$r=7$$
    $$\therefore$$ Equation of circle with centre $$(1,-1)$$ and radius $$7$$ units
    $$(x-1)^{2}+(y+1)^{2}=7^{2}$$
    $$\Rightarrow x^{2}+y^{2}-2x+2y-47=0$$
  • Question 3
    1 / -0
    lf the line $$3{x}-2{y}+6=0$$ meets $${x}$$-axis, $$y$$-axis respectively at $${A}$$ and $${B}$$, then the equation of the circle with radius $${A}{B}$$ and Centre at $${A}$$ is
    Solution
    Given that:
    Equation of the straight line: $$3x-2y+6=0$$
    Since, $$A$$ is the centre and $$B$$ is one end-point.
    So, $$A$$ is the mid-point of two diameter end points.
    One point is $$B$$ and let other be $$(x,y)$$ 
    So, $$-2=\dfrac{x+0}{2}, 0=\dfrac{y+3}{2}$$
    So,Co-ordinates of other end-point$$=\left(-4,-3\right)$$
    Equation of the circle as centre $$A$$ is
    $$(x-0)(x+4)+(y-3)(y+3)=0$$ (Diameter form)
    or, $$x^2+4x+y^2-9=0$$
    or, $$x^2+y^2+4x-9=0$$
    Hence, B is the correct option.

  • Question 4
    1 / -0
    lf the lines $$2x+3y+1=0$$ and $$3x-y-4=0$$ lie along diameters of a circle of circumference $$ 10\pi$$, then the equation of the circle is:
    Solution
    $$2x+3y+1=0$$  and  $$3x-y-4=0$$ lie along diameter of circle.

    So, point of intersection of $$2x+3y+1=0$$ and $$3x-7-4=0$$ is a centre of required circle.

    $$\therefore 11x-11=0.$$

    $$x=1$$ & $$y=-1.$$

    So, equation of circle having radius $$r=\dfrac{10}{2\pi}=5$$ and centre $$(1,-1)$$ is given by $$(x-1)^{2}+(y+1)^{2}=25=r^{2}$$

    $$\Rightarrow x^{2}+y^{2}-2x+2y-23=0$$
  • Question 5
    1 / -0
    lf the lines $$2x-3y=5$$ and $$3x-4y=7$$ are two diameters of a circle of radius $$7$$ then the equation of the circle is
    Solution
    $$2x-3y=5----(1)$$
    $$3x-4y=7----(2)$$
    Intersection of this lines given centre of circle
    $$\therefore$$ from (1) & (2),
    $$n=1, y=-1$$
    So, equation of circle is
    $$(x-1)^{2}+(y+1)^{2}=(7)^{2}$$
    $$\Rightarrow x^{2}+y^{2}-2x+2y-47=0$$
  • Question 6
    1 / -0
    The equation of the image of the circle $$x^{2}+y^{2}-6x-4y+12=0$$ by the line mirror $$x+y-1=0$$ is
    Solution

    The image of circle w.r.t same line means image of centre w.r.t that line without changing radius
    $$x^{2}+y^{2}-6x-4y+12=0$$
    Centre $$=(3,2)$$ Radius$$=1$$
    Image of $$(3,2)$$ w.r.t $$x+y-1=0$$
    $$\dfrac {x-3}{1}=\dfrac {y-2}{1}=-2\dfrac {(3+2-1)}{1^{1}+1^{2}}=-4$$
    $$x=-1$$, $$y=-2$$
    Then equation of image of circle is
    $$(x+1)^{2}+(y+2)^{2}=(1)^{2}$$
    $$\Rightarrow x^{2}+y^{2}+2x+4y+4=0$$

  • Question 7
    1 / -0
    The area of a circle centered at $$(1,2)$$ and passing through $$(4,6)$$ is
    Solution
    Coordinates of the centre of the circle $$\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 1,2 \right) $$ 
    and coordinates of the point through which it passes $$\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 4,6 \right) $$.
    We know that the radius of the circle $$r=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 4-1 \right)  }^{ 2 }+{ \left( 6-2 \right)  }^{ 2 } } =\sqrt { 9+16 } =5$$
    Therefore, the area of the circle 
    $$\pi { r }^{ 2 }=\pi { \left( 5 \right)  }^{ 2 }=25\pi $$ sq. units 
  • Question 8
    1 / -0
    A line is at a constant distance $$c$$ from the origin and meets the coordinates axes in $$A$$ and $$B$$. The locus of the centre of the circle passing through $$O, A, B$$ is
    Solution
    Let the equation of line be 
    $$\displaystyle \frac{x}{a}+\frac{y}{b}=1$$
    where $$a$$ and $$b$$ are the x-intercept and y-intercept.
    Then the coordinates of A and B are $$(a,0)$$ and $$(0,b)$$
    Distance of origin to the line is $$c$$
    $$\Rightarrow c=\displaystyle \frac{|-1|}{\sqrt{(\dfrac{1}{a})^2+(\dfrac{1}{b})^2}}$$
    $$\Rightarrow \displaystyle \frac{1}{c}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$$
    $$\Rightarrow \displaystyle \frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}$$   ....(1)
    Let the center of circle through O, A, B be $$(h,k)$$
    Points $$O(0,0), A(a,0),(0,b)$$ forms a right triangle.
    So, the center of circle is the mid-point of AB i.e.$$\displaystyle(\frac{a}{2},\frac{b}{2})$$
    $$\Rightarrow h=\displaystyle \frac{a}{2}, k=\frac{b}{2}$$
    $$\Rightarrow a=2h, b=2k$$
    Substitute this value in (1), we get
    $$ \displaystyle \frac{1}{c^2}=\frac{1}{4h^2}+\frac{1}{4k^2}$$
    $$\Rightarrow \displaystyle \frac{4}{c^2}=\frac{1}{h^2}+\frac{1}{k^2}$$
    $$\Rightarrow 4c^{-2}=x^{-2}+y^{-2}$$ (Replacing $$h,k$$ by $$x,y$$ )
  • Question 9
    1 / -0
    The equation of the circle passing through the point $$(-1,2)$$ and having two diameters along the pair of lines $$\mathrm{x}^{2}-\mathrm{y}^{2}-4\mathrm{x}+2\mathrm{y}+3=0$$ is
    Solution
    $$x^{2}-y^{2}-4x+4y+3=0$$ are pair of lines along the diameters  of required circle.
    So, point of intersection this pair of straight line is centre of required circle.
    For point of intersection
    Partial differential w.r.t $$x$$; $$2x-4=0$$ --------(1)
    Partial diff. equation  w rt $$y$$; $$-2y+2=0$$-------(2)
    from (1) & (2), $$x=2 y=1$$
     $$\therefore$$ Equation of circle,
    $$(x-2)^{2}+(y-1)^{2}=r^{2}$$.
    So, (-1,2) lies on $$(x-2)^{2}+(y-2)^{2}=r^{2}$$
    $$9+1=r^{2}$$
    $$r^{2}=10$$
    $$\therefore x^{2}-4x+y^{2}-2y+5=10$$
    $$\Rightarrow x^{2}+y^{2}-4x-2y-5=0$$
  • Question 10
    1 / -0
    The eccentricity of the conic represented by $$\sqrt{(x+2)^{2}+y^{2}}+\sqrt{(x-2)^{2}+y^{2}}=8$$ is 
    Solution
    This  is  of  the  form  $$SP + SP^{'} = 2a$$
    $$\therefore PP^{'} = 2ae$$
    $$ =\sqrt{(2+2)^{2}}$$
    $$ = 4 $$
    $$2ae = 4$$
    But $$ 2a = 8$$ (from the equation given)
    $$\therefore e= \dfrac{1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now