Self Studies

Conic Sections Test - 15

Result Self Studies

Conic Sections Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The centre, vertex, focus of a conic are $$(0,0),
    (0,5), (0,6)$$. Its length of latus rectum is
    Solution
    Given centre vertex and focus of the conic are $$C(0,0), A(0,5)$$ and $$(0,6)$$ respectively
    $$\Rightarrow a=5, ae=6  \Rightarrow e=\cfrac{6}{5}$$
    Thus $$b^2=a^2(e^2-1)=11$$
    Therefore, length of latus rectum is $$=\cfrac{2b^2}{a}=\cfrac{22}{5}$$
    Hence, option 'D' is correct
  • Question 2
    1 / -0
    The total number of real tangents that can be drawn to the ellipse $$3x^{2}+5y^{2}=32$$ and $$25x^{2}+9y^{2}=450$$ passing through $$(3,5)$$ is
    Solution
    $$(3,5)$$ lies on $$25x^2+9y^2=450$$

    Therefore, one tangent can be drawn

    and $$(3,5)$$ lies outside $$3x^2+5y^2=32$$ because $$S_1>0$$

    Therefore, two tangents can be drawn.
    So total 3 tangents
  • Question 3
    1 / -0
    The length of the latus rectum of the hyperbola $$x^{2}-4y^{2}=4$$ is
    Solution
    $$x^2-4y^2=4$$
    $$\Rightarrow \cfrac{x^2}{2^2}-\cfrac{y^2}{1}=1$$
    $$\Rightarrow a=2, b=1$$
    Thus length of the latus rectum is $$=\cfrac{2b^2}{a}=1$$
    Hence, option 'B' is correct
  • Question 4
    1 / -0
    A straight line is drawn through the centre of the circle $${x}^{2}+{y}^{2}=2ax$$ parallel to $${x}+2y=0$$ and intersecting the circle at $${A}$$ and $${B}$$. Then, the area of $$\Delta A{O}{B}$$ is
    Solution

    Given equation is $$x^{2}+y^{2}=2ax$$

    Centre $$=(a,0)$$ and radius $$=a$$

    Therefore, equation of line having slope $$=$$ $$\dfrac {-1}{2}$$ and passing through $$(4,0)$$
    $$y=\dfrac {-1}{2}(x-a)$$
    Line $$AB$$: $$2y+x=a$$  -(1)
    $$y=\dfrac {a+x}{2}$$
    $$d=\left | \dfrac {a}{\sqrt{5}} \right |$$
    So, area of $$\triangle AOB =\dfrac {1}{2}\times\ AB\ \times$$ (perpendicular distance of $$Q$$ from $$AB$$ )
    $$=\dfrac {1}{2}\times 2a\times \dfrac {a}{\sqrt{5}}$$
    $$=\dfrac {a^{2}}{\sqrt{5}}$$

  • Question 5
    1 / -0
    The equation  $$\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=5$$ represents
    Solution
    let $$A(2,0)$$, $$B(-2,0)$$ and $$P(x,y)$$ be three points
    $$AB=4$$
    Given that, $$\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=5>AB$$
    $$\Rightarrow PA+PB =$$ constant $$ >AB$$
    Therefore, locus of $$P$$ is an ellipse.
  • Question 6
    1 / -0
    The length of latus rectum of the hyperbola $$4x^{2}-9y^{2}-16x-54y-101=0$$ is
    Solution
    $$4x^{2}-9y^{2}-16x-54y-101=0$$
    $$\Rightarrow 4(x^2-4x)-9(y^2+6y)=101$$
    $$\Rightarrow 4(x^2-4x+4)-9(y^2+6y+9)=101+16-81=36$$
    $$\Rightarrow \cfrac{(x-2)^2}{3^2}-\cfrac{(y+3)^2}{2^2}=1$$
    $$\Rightarrow a=3, b=2$$
    Thus length of latus rectum of the given hyperbola is $$=\cfrac{2b^2}{a}=\cfrac{8}{3}$$
  • Question 7
    1 / -0
    The equation $$(\mathrm{x}^{2}-\mathrm{a}^{2})^{2}+(\mathrm{y}^{2}-\mathrm{b}^{2})^{2}=0$$ represent points which are
    Solution
    $$(x^{2}-a^{2})^{2}+(y^{2}-b^{2})^{2}= 0$$ represents points
    $$x= ^{+}_{-}a$$ and $$y= ^{+}_{-}b$$
    $$\therefore (a,b), (a,-b), (-a,b)$$ and $$(-a,-b)$$ are four points
    These point lie on a circle whose centre is at $$(0,0)$$ and radius is $$\sqrt{a^2+b^2}$$
  • Question 8
    1 / -0
    The equation of directrix and latus rectum of a parabola are $$3x-4y+27=0$$ and $$3x-4y+2=0$$. Then the length of latus rectum is
    Solution

    $$d=\left | \dfrac{C_{1}-C_{2}}{\sqrt{a^{2}+b^{2}}} \right |$$

    where $$d$$ is the distance between lines whose equations are $$ax+by+C_{1}=0$$ & $$ax+by+C_{2}=0$$

    $$d=\left | \dfrac{27-2}{\sqrt{4^{2}+3^2}} \right |$$
    $$=5$$
    $$d=5$$
    If the distance between vertex and latus rectum$$=$$distance of vertex from directrix$$=a$$

    then $$d=2a=5$$
    $$\Rightarrow$$ Length of latus rectum$$=4a=10$$

  • Question 9
    1 / -0
    A circle of radius $$5$$ units passes through the points $$(7,1),(9,5)$$. If the ordinate of the centre is less than $$2$$, then the equation of the circle is
    Solution
    Let $$(h, k)$$ is a centre of circle , so

    $$(h-7)^2+(k-1)^2= 25$$
    and $$(h-9)^2+ (k-5)^2= 25$$

    $$Let  x^2+y^2+2gx+2fy+c= 0$$  is  circle .
    so, $$(7, 1)$$  lies  on  circle  so, 

    $$50+14g+2f+c= 0$$     ----(1)
    $$(9, 5)$$ lies on circle

    $$106+18g+10f+c= 0$$     ----(2)

    and $$g^2+f^2-c= 25$$     -----(3)
    From (1) & (2),
    $$4g+8f+56= 0$$

    $$g+2f+14= 0$$
    From (1), (2), (3), (4),
    $$g= -12$$  and  $$f= -1, c= 120$$

    so, $$eq^n$$  of  circle  is

    $$x^2+y^2-24x-2y+120= 0$$
  • Question 10
    1 / -0
    A parabola with axis parallel to $$x$$ axis passes through $$(0, 0), (2, 1), (4, -1).$$ Its length of latus rectum is
    Solution
    $$(y-k)^{2}= 4a(x-h)$$
    It passes through $$(0,0)$$
    $$k^{2}= -4ah$$     ---(1)
    It passes through $$(2,1)$$
    $$(k-1)^{2}= 4a(2-h)$$        ---(2)
    It passes through $$(4,-1)$$
    $$(k+1)^{2}= 4a(4-h)$$        ---(3)
    (2)  +  (3)
    $$2(k^{2}+1)= 4a(6-2h)$$
    $$2k^{2}+2= 24a+2k^{2}$$   ( form eq (1) )
    $$4a =  \dfrac{1}{3}$$
    $$\therefore$$ length of LR $$= \dfrac{1}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now