Self Studies

Conic Sections Test - 16

Result Self Studies

Conic Sections Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Length of the latusrectum of the hyperbola $$xy=c$$ ,is equal to
    Solution
    if co-ordinate axis is rotated by $$45^0$$
    Then new equation of hyperbola is $$(\dfrac{X-Y}{\sqrt2})(\dfrac{X+Y}{\sqrt2})=c$$
    $$\Rightarrow X^2-Y^2=2c$$
    Therefore, length of latus rectum is $$2\dfrac{b^2}{a}=\dfrac{4c}{\sqrt{2c}}=2\sqrt2 c$$
  • Question 2
    1 / -0
    The length of the latus rectum of the parabola, whose focus is $$\left(\displaystyle \frac{u^{2}}{2g}\sin 2\alpha,\frac{-u^{2}}{2g}\cos 2\alpha \right)$$ and directrix is $$y=\dfrac{u^{2}}{2g}$$, is
    Solution
    $$F= \left ( \dfrac{u^{2}}{2g}\sin \ 2\alpha ,\dfrac{-u^{2}}{2g}\cos \ 2\alpha \right )$$
    For the standard form of a parabola , 
    Distance between the directrix and the focus $$\times 2 = $$ Length of the latus rectum. 
    $$L.R.=2\left(\dfrac{u^{2}}{2g}+\dfrac{u^{2}}{2g}\cos \ 2\alpha\right)$$ 
    $$  =\dfrac{u^{2}}{g}(1+\cos \ 2\alpha)$$
    $$=\dfrac{2 u^{2}}{g}\cos ^{2}\alpha $$
    Hence, option $$D$$ is correct.
  • Question 3
    1 / -0
    The difference between the length $$2a$$ of the transverse axis of a hyperbola of eccentricity $$e$$ and the length of its latus rectum is :
    Solution
    Let the equation of hyperbola be $$\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$$
    Length of transverse axis is $$2a$$ and 
    Length of latus rectum is $$\displaystyle \frac { 2{ b }^{ 2 } }{ a } $$
    Now, difference $$\displaystyle =\left| 2a-\frac { 2{ b }^{ 2 } }{ a }  \right| =\frac { 2 }{ a } \left| 2{ a }^{ 2 }-{ a }^{ 2 }{ e }^{ 2 } \right| $$
    $$\therefore$$ Difference $$=2a\left| 2-{ e }^{ 2 } \right| $$
  • Question 4
    1 / -0
    A parabola has x- axis as its axis, y- axis as its directrix and $$4a$$ as its latus rectum. If the focus lies to the left side of the directrix then the equation of the parabola is
    Solution
    Let $$P(x,y)$$ be a point on the parabola
    Given that the directrix is y-axis 
    So, coordinates of any point $$M$$ on directrix is of the form $$(0,y)$$
    Length of latus rectum $$=4a=2(2a)$$
    Since, axis of parabola is x-axis, and focus is on left side of directrix
    So, focus is at $$(-2a,0)$$

    By definition of parabola,
    $$PS=PM$$
    $$(x+2a)^2+y^2=x^2$$
    $$\Rightarrow y^2=-4ax-4a^2$$
    $$\Rightarrow y^2=-4a(x+a)$$
  • Question 5
    1 / -0
    If $$L_{1}L_{2}$$ is the latusrectum of $$y^{2}=12x$$,  $$P$$ is any point on the directrix then the area of $$\Delta PL_{1}L_{2}$$ =
    Solution
    The length of latus rectum is $$2l=4a=12$$
    and distance between latus rectum and directrix is $$2a=6$$
    Therefore, $$\triangle PL_1L_2=\dfrac{(2a)(2l)}{2}=36 $$

  • Question 6
    1 / -0
    The length of latus rectum of the parabola $$(x-2a)^{2}+y^{2}=x^{2}$$ is
    Solution
    We have,  $$(x-2a)^{2}+y^{2}=x^{2}$$
    $$\Rightarrow x^2-4ax+4a^2+y^2=x^2$$
    $$\Rightarrow y^2= 4ax-4a^2=4a(x-a)$$
    Comparing it with standard parabola $$Y^2=4bX$$
    $$Y=y, X=x-a, b = a$$
    We know length of latus rectum of parabola $$Y^2=4bX$$ is $$4b$$
    Hence length of latus rectum of given parabola is $$=4\times a = 4a$$
  • Question 7
    1 / -0
    The arrangement of the following parabolas in the ascending order of their length of latusrectum 
    A)   $$y=4x^{2}+x+1$$     B) $$2y=x^{2}+x+5$$
    C)   $$x=2y^{2}+y+3$$     D) $$y^{2}+x+y+9=0$$
    Solution
    We find the latus rectum for the given parabolas.
    A. $$y=4{ x }^{ 2 }+x+1$$ $$\Rightarrow y-1=4{ x }^{ 2 }+x$$
    Adding $$\displaystyle\frac { 1 }{ 64 } $$ to both sides we get
    $$\displaystyle{ \Rightarrow \left( x+\frac { 1 }{ 8 }  \right)  }^{ 2 }=\frac { 1 }{ 4 } \left( y-\frac { 15 }{ 16 }  \right) $$
    Length of latus rectum is $$\displaystyle\frac{1}{4}$$

    B. $$2y={ x }^{ 2 }+x+5$$ $$\Rightarrow 2y-5={ x }^{ 2 }+x$$
    Adding $$\displaystyle\frac { 1 }{ 4 } $$ to both sides we get
    $$\displaystyle{ \Rightarrow \left( x+\frac { 1 }{ 2 }  \right)  }^{ 2 }=2\left( y-\frac { 19 }{ 8 }  \right) $$
    Length of latus rectum is $$2$$

    C. $$x={ 2y }^{ 2 }+y+3$$
    $$\Rightarrow x-3={ 2y }^{ 2 }+y$$
    Adding $$\displaystyle\frac { 1 }{ 16 } $$ to both sides we get
    $$\displaystyle{ \Rightarrow \left( y+\frac { 1 }{ 4 }  \right)  }^{ 2 }=\frac { 1 }{ 2 } \left( x-\frac { 23 }{ 8 }  \right) $$
    Length of latus rectum is $$\displaystyle\frac{1}{2}$$

    D. $${ y }^{ 2 }+y+x+9=0$$ $$\Rightarrow x-9={ y }^{ 2 }+y$$
    Adding $$\displaystyle\frac { 1 }{ 4 } $$ to both sides we get
    $$\displaystyle{ \Rightarrow \left( y+\frac { 1 }{ 2 }  \right)  }^{ 2 }=-1\left( x+\frac { 35 }{ 4 }  \right) $$
    Length of latus rectum is $$1$$
    So the ascending order of latus rectum is $$A,C,D,B$$
  • Question 8
    1 / -0
    The length of latus rectum of the parabola $$y^{2}+8x-2y+17=0$$ is
    Solution
    The given parabola is,  $$y^{2}+8x-2y+17=0$$
    $$\Rightarrow (y^2-2y+1)=-8x-17+1=-8x-16$$
    $$\Rightarrow (y-1)^2=-8(x+2)$$
    Comparing with standard parabola $$Y^2=-4aX$$
    $$Y=y-1,X=x+2, a=2$$
    Hence length of latus rectum is $$=\displaystyle 4a = 4\times 2=8$$
  • Question 9
    1 / -0
    The length of latus rectum of the hyperbola $$xy-3x-3y+7=0$$ is
    Solution
    Given Equation of Hyperbola is $$xy-3y-3x+7=0$$ 

    We can rewrite the equation as $$x(y-3)-3y+7=0$$  .....$$( 1 )$$

    Now by adding and subtracting $$9$$ in equation $$( 1 )$$, we get 
    $$\Rightarrow$$  $$x(y-3)-3y+9-9+7=0$$

    Now eq. of Hyperbola can be written in the simple terms as 
    $$x(y-3)-3(y-3)-2=0$$

    $$\Rightarrow$$ $$(x-3)(y-3)=2$$ or $$(x-3)(y-3)=(\sqrt{2})^2$$ ......$$( 2 )$$

    Equation $$( 2 )$$ is similar to equation of a rectangular Hyperbola of the form $$xy=c^2$$, with shifted origin at $$(3,3)$$

    So given Hyperbola is also a rectangular Hyperbola, with $$c=\sqrt{2}$$ 

    We know that for a rectangular Hyperbola $$b=a=c\sqrt{2}$$

    So value of $$a$$ for given Hyperbola $$=c\sqrt{2}=\sqrt{2} \times \sqrt{2} = 2$$

    $$\Rightarrow$$ For any rectangular Hyperbola length of latusrectum $$=2a$$

    Hence, the length of latusrectum of given Hyperbola $$=2 \times 2=4$$
  • Question 10
    1 / -0
    The equation of the circle having centre $$(1,\ -2)$$ and passing through the point of intersection of the lines $$3x+y=14$$ and $$2x+5y=18$$ is
    Solution
    The circle passes through intersection of $$3x+y=14$$ and $$2x+5y=18$$.
    $$\therefore 5(3x+y-14)-2x-5y+18=0\implies 15x-70-2x+18=0\implies x=4\implies y=2$$
    Hence, equation of circle is
    $$(x-1)^2+(y+2)^2=(4-1)^2+(2+2)^2$$
    $$\therefore x^2-2x+1+y^2+4y+4=25$$
    $$\therefore x^2+y^2-2x+4y-20=0$$
    This is the required equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now