We find the latus rectum for the given parabolas.
A. $$y=4{ x }^{ 2 }+x+1$$ $$\Rightarrow y-1=4{ x }^{ 2 }+x$$
Adding $$\displaystyle\frac { 1 }{ 64 } $$ to both sides we get
$$\displaystyle{ \Rightarrow \left( x+\frac { 1 }{ 8 } \right) }^{ 2 }=\frac { 1 }{ 4 } \left( y-\frac { 15 }{ 16 } \right) $$
Length of latus rectum is $$\displaystyle\frac{1}{4}$$
B. $$2y={ x }^{ 2 }+x+5$$ $$\Rightarrow 2y-5={ x }^{ 2 }+x$$
Adding $$\displaystyle\frac { 1 }{ 4 } $$ to both sides we get
$$\displaystyle{ \Rightarrow \left( x+\frac { 1 }{ 2 } \right) }^{ 2 }=2\left( y-\frac { 19 }{ 8 } \right) $$
Length of latus rectum is $$2$$
C. $$x={ 2y }^{ 2 }+y+3$$
$$\Rightarrow x-3={ 2y }^{ 2 }+y$$
Adding $$\displaystyle\frac { 1 }{ 16 } $$ to both sides we get
$$\displaystyle{ \Rightarrow \left( y+\frac { 1 }{ 4 } \right) }^{ 2 }=\frac { 1 }{ 2 } \left( x-\frac { 23 }{ 8 } \right) $$
Length of latus rectum is $$\displaystyle\frac{1}{2}$$
D. $${ y }^{ 2 }+y+x+9=0$$ $$\Rightarrow x-9={ y }^{ 2 }+y$$
Adding $$\displaystyle\frac { 1 }{ 4 } $$ to both sides we get
$$\displaystyle{ \Rightarrow \left( y+\frac { 1 }{ 2 } \right) }^{ 2 }=-1\left( x+\frac { 35 }{ 4 } \right) $$
Length of latus rectum is $$1$$
So the ascending order of latus rectum is $$A,C,D,B$$