Self Studies

Conic Sections Test - 17

Result Self Studies

Conic Sections Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of parabola whose latus rectum is $$2$$ units, axis is $$x+y-2=0$$ and tangent at the vertex is $$x-y+4=0$$ is given by
    Solution

    $${\textbf{Step - 1: Find  value of 'a' from Length of latus rectum,}}$$ 

                    $${\text{We know that length of latus rectum of any parabola is 4a.}}$$

                   $${\text{Given that 4a = 2  }} \Rightarrow {\text{a = }}\dfrac{1}{2}.$$ 

                   $${\text{Also given that the axis is x + y = 2}}.$$ 

    $${\textbf{Step - 2: Use relation between Perpendicular distance from axis and Distance from tangent of a parabola.}}$$ 

                       $${\text{From parabola's formula we know that,}}$$ 

                       $$\Rightarrow {\left( {{\text{perpendicular distance from axis}}} \right)^2}{\text{ = 4a}}\left( {{\text{distance from tangent}}} \right).$$

                       $$ \Rightarrow {\text{ }}{\left( {\dfrac{{{\text{x + y}} - {\text{2}}}}{{\sqrt 2 }}} \right)^2} = 4\left( {\dfrac{1}{2}} \right)\left( {\dfrac{{{\text{x}} - {\text{y + 4}}}}{{\sqrt 2 }}} \right).$$ 

                       $$ \Rightarrow {\left( {{\text{x + y}} - 2} \right)^2} = 2\sqrt 2 \left( {{\text{x}} - {\text{y + 4}}} \right).$$ 

    $${\textbf{Hence, The equation is }}{\left( {{\textbf{x + y}} - 2} \right)^2} = 2\sqrt 2 \left( {{\textbf{x}} - {\textbf{y + 4}}} \right).(C)$$ 




  • Question 2
    1 / -0
    If major axis is the x-axis and passes through the points $$(4, 3)$$ and $$(6, 2)$$, then the equation for the ellipse whose centre is the origin is satisfies the given condition.
    Solution
    Major axis is x - axis
    Let the equation of the ellipse be $$\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} =1$$
    $$(4,3)$$ and $$(6, 2)$$ lies on it 
    $$\displaystyle \frac{16}{a^2} + \frac{9}{b^2} =1$$ ........ $$(i)$$

    $$\displaystyle \frac{36}{a^2} + \frac{4}{b^2} =1$$ ........ $$(ii)$$
    Subtracting $$(ii)$$ from $$(i)$$, we get 
    $$\displaystyle \frac{-20}{a^2} + \frac{5}{b^2} =0$$ 
    $$\Rightarrow 5a^2 = 20 b^2  \Rightarrow a^2 = 4b^2$$
    Putting the value of $$a^2$$ in eqn. $$(i)$$ 
    $$\displaystyle \frac{16}{4b^2} + \frac{9}{b^2} = 1$$
    $$\therefore b^2 =13$$ and $$a^2 = 4b^2 = 4 \times 13 =52$$
    $$\therefore $$ Equation of ellipse is $$\displaystyle \frac{x^2 }{52}+\frac{y^2}{13}=1$$
  • Question 3
    1 / -0
    $$(4-\mathrm{a})\mathrm{x}^{2}+(12-\mathrm{a})\mathrm{y}^{2}=\mathrm{a}^{2}-16\mathrm{a}+48$$ represents an ellipse. Then:
    Solution
    LHS of equation,we can rewrite it as
    $$\displaystyle { a }^{ 2 }-16a+48=(a-4)(a-12)=(4-a)(12-a)$$
    Therefore the given equation can be written as 
    $$\displaystyle \frac { { x }^{ 2 } }{ 12-a } +\frac { { y }^{ 2 } }{ 4-a } =1$$
    This will represent an ellipse ,If $$\displaystyle 4-a>0\Longrightarrow a<4$$
    ($$\displaystyle \ddot { . } 4-a$$ is the smaller of $$\displaystyle 12-a$$ )
    So, taking intersection of $$\displaystyle 12-a$$ and $$\displaystyle 12-a>0.$$
  • Question 4
    1 / -0
    Latus rectum of a parabola is a ........ line segment with respect to the axis of the parabola through the focus whose endpoints lie on the parabola.
    Solution
    Consider the above image which shows that the latus rectum of a parabola is a line segment $$perpendicular $$ to the axis of the parabola, through the focus and whose end points lie on the parabola.

  • Question 5
    1 / -0
    If the equation of the incircle of an equilateral triangle is $${ x }^{ 2 }+{ y }^{ 2 }+4x-6y+4=0$$, then the equation of the circumcircle of the triangle is
    Solution
    Given equation of the incirle is $${ x }^{ 2 }+{ y }^{ 2 }+4x-6y+4=0$$
    Its incenter is $$(-2,3)$$ and inradius $$=\sqrt { 4+9-4 } =3$$
    Since in an equilateral triangle, the incenter and the circumcenter coincide,
    $$\therefore$$ Circumcenter $$=(-2,3)$$
    Also, in an equilateral triangle, circumradius $$=2($$ inradius$$)$$
    $$\therefore$$ Circumradius $$=2.3=6$$
    $$\therefore$$ The equation of the circumcircle is
    $${ \left( x+2 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 }={ \left( 6 \right)  }^{ 2 }\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+4x-6y-23=0$$
  • Question 6
    1 / -0
    The length of the latus rectum of the parabola 
    $$169\left \{ (x-1)^{2}+(y-3)^{2} \right \}=(5x-12y+17)^{2}$$ is
    Solution
    Given parabola may be written as, $$\displaystyle (x-1)^2+(y-3)^2 = \left(\frac{5x-12y+17}{\sqrt{5^2+12^2}}\right)^2$$

    Thus focus of the parabola is $$(1,3)$$ and directrix is $$5x-12y+17$$ 

    Now distance between directrix to the focus is $$ =\cfrac{5(1)-12(3)+17}{\sqrt{5^2+12^2}}=\cfrac{14}{13}$$

    Hence length of latus rectum of the parabola is $$=2\times \cfrac{14}{13}=\cfrac{28}{13}$$
  • Question 7
    1 / -0
    The equation $$x^{2}+y^{2}-2x+4y+5=0$$ represents 
    Solution
    $$x^{2}+y^{2}-2x+4y+5=0$$
    $$(x-1)^{2}+(y+2)^{2} -5+5=0$$
    $$\Rightarrow (x-1)^{2}+(y+2)^{2}=0$$
    Since, radius is $$0$$, hence its a point

    Alternative method:
    Here, $$a=b=1$$
    $$r=\sqrt{1+4-5}=0$$
    Hence, a circle of radius $$0$$. So, its a point.
  • Question 8
    1 / -0
    The equation $$7y^2-9x^2+54x-28y-116=0$$ represents
    Solution
    Given conic is $$7y^2-9x^2+54x-28y-116=0$$

    Here $$a=-9, b=7, c=-116, f=-14, g=27, h=0$$

    $$\therefore \Delta=abc+2fgh-af^2-bg^2-ch^2=-9.7.(-116)+0-9(14)^2-7(27)^2-0=441\neq 0$$

    and $$h^2=0,  ab=-63$$

    clearly $$h^2> ab$$

    we know that for a equation $$ax^2+by^2+2hxy2gx+2fy+c=0$$ it represents a hyperbola if $$Δ ≠ 0$$ and $$h² > ab$$

    Hence given conic represent hyperbola.
  • Question 9
    1 / -0
    If the parabola $$y^{2}=4ax$$ passes through $$(3,\:2)$$ then the length of latus rectum is
    Solution
    If the parabola $$y^{2}=4ax$$ passes through $$(3,\:2)$$
    therefore, $$4=4a(3)$$
    $$\Rightarrow a=\dfrac{1}{3}$$
    Therefore, length of latus rectum: $$l=4a=\dfrac{4}{3}$$
  • Question 10
    1 / -0
    The equation of the circle passing through the point $$(1, 1)$$ and having two diameters along the pair of lines $$x^{2}-y^{2}-2x+4y-3=0$$ is
    Solution
    $$x^{2}-y^{2}-2x+4y-3=0$$

    $$\Rightarrow x^2-2x+1 = y^2-4y+4$$
    $$\Rightarrow (x-1)^2 = (y-2)^2\Rightarrow x-1 = \pm (y-2)$$

    Thus lines are $$x-y=-1$$ and $$x+y=3$$
    Solving these lines we get the centre of the required circle which is $$(1, 2)$$

    Thus radius of the circle is $$\sqrt{(1-1)^2+(1-2)^2} = 1$$

    Hence required circle is $$(x-1)^2+(y-2)^2 = 1\Rightarrow x^2+y^2-2x-4y+4=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now