Self Studies

Conic Sections Test - 20

Result Self Studies

Conic Sections Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The intercept on the line $$y=x$$ by the circle $${ x }^{ 2 }+{ y }^{ 2 }-2x=0$$ is $$AB$$. Equation of the circle with $$AB$$ as a diameter is
    Solution
    Equation of any circle passing through the point of intersection of 
    $${ x }^{ 2 }+{ y }^{ 2 }-2x=0$$ and $$y=x$$ is 
    $${ x }^{ 2 }+{ y }^{ 2 }-2x+\lambda \left( y-x \right) =0$$ $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }-\left( 2+\lambda  \right) x=\lambda y=0.$$
    Its centre is $$\displaystyle \left( \frac { 2+\lambda  }{ 2 } ,\frac { -\lambda  }{ 2 }  \right) .$$
    For $$AB$$ to be the diameter of the required circle, the centre must lie on $$AB,$$
     i.e., $$\displaystyle \frac { 2+\lambda  }{ 2 } =\frac { -\lambda  }{ 2 } \Rightarrow \lambda =-1.$$
    Thus, equation of required circle is $${ x }^{ 2 }+{ y }^{ 2 }-x-y=0.$$ 
  • Question 2
    1 / -0
    The equation $$\displaystyle \frac {x^2}{8-t}\, +\, \displaystyle \frac {y^2}{t-4}\, =\, 1$$ will represent an ellipse if
    Solution
    Consider Equation, $$\displaystyle\frac{x^2}{a^2}+\displaystyle\frac{y^2}{b^2}=1$$ to represent an ellipse equation.
    $$a>0,b>0,a\neq b$$
    Given,equation $$\displaystyle\frac{x^2}{(8-t)}+\displaystyle\frac{y^2}{(t-4)}=1$$
    $$\Rightarrow (8-t)>0\;$$ and $$\;(t-4)>0,(8-t)\neq(t-4)$$
    $$\Rightarrow t\in(-\infty,8) \cap (4,\infty) \cap$$ {$$t\neq6$$}
    $$\Rightarrow t\in(4,8)-$${$$6$$}
  • Question 3
    1 / -0
    The normal at the point $$(3, 4)$$ on a circle cuts the circle again at the point $$(1, 2)$$. Then the equation of the circle is -
    Solution
    We know the normal of a circle passes through it's center.
    So the given points $$(3,4)$$ and $$(1,2)$$ are end point of the diameter.
    and  the centre of the circle is mid point of the given points, $$\displaystyle \equiv \left( 2,3 \right) $$
    and Radius $$=\displaystyle \frac { \sqrt { 4+4 }  }{ 2 } =\frac { 2\sqrt{ 2 }  }{ 2 } =\sqrt { 2 } $$
    Hence required circle is, $$\displaystyle (x-2{ ) }^{ 2 }+(y-3{ ) }^{ 2 }=2$$
    $$\Rightarrow \displaystyle { x }^{ 2 }+{ y }^{ 2 }-4x-6y+11=0$$
  • Question 4
    1 / -0
    The lines $$2x - 3y = 5 \ \ \& \ \ 3x - 4y = 7$$ are diameters of a circle of area 154 sq units. Then the equation of the circle is
    Solution

    Intersection of any 2 diameters gives us the center

    $$2x – 3y = 5 -eq.1$$

    $$3x – 4y = 7 -eq.2$$

    $$3 \times eq.1 – 2 \times eq.2$$

    $$\implies -9y + 8y = 15 - 14$$

    $$\implies y = -1 \implies x = 1$$

    Center $$= (1,-1)$$

    And given $$A = 154$$

    $$\implies \pi r^2 = 154$$

    $$r^2 = \dfrac{154}{22} \times 7 = 49$$

    $$r = 7$$

    Equation of circle is

    $$(x - 1) ^2 + (y+1)^2 = 7^2$$

    $$\implies x^2 + y^2 -2x + 2y = 47$$

  • Question 5
    1 / -0
    For the points on the circle $$\displaystyle x^{2}+y^{2}-2x-2y+1=0$$, the sum of maximum and minimum values of $$4x + 3y$$ is 
    Solution

    The given equation can be written as $$(x - 1) ^2 + (y - 1)^2 = 1^2$$

    Any point on this circle is given by $$(1 + \cos \theta , 1 + \sin \theta)$$

    $$4x + 3y = 7 + 4 \cos \theta + 3 \sin \theta = f(\theta)$$

    If $$f = a \cos \theta + b \sin \theta + c$$

    $$max = c + \sqrt{a^2 + b^2} , min = c - \sqrt{a^2 + b^2}$$

    $$\implies max \, f(\theta) + min \, f(\theta) = 2c =2 \times 7 = 14$$

  • Question 6
    1 / -0
    The lines $$2x - 3y = 5$$ & $$3x - 4y = 7$$ are diameters of a circle of area $$154$$ sq units Then the equation of the circle is
    Solution

    Intersection of any 2 diameters gives us the center

    $$2x – 3y = 5 -eq.1$$

    $$3x – 4y = 7 -eq.2$$

    $$3 \times eq.1 – 2 \times eq.2$$

    $$\implies -9y + 8y = 15 - 14$$

    $$\implies y = -1 \implies x = 1$$

    Center = (1,-1)

    And given A = 154

    $$\implies \pi r^2 = 154$$

    $$r^2 = \dfrac{154}{22} \times 7 = 49$$

    $$r = 7$$

    Equation of circle is

    $$(x - 1) ^2 + (y+1)^2 = 7^2$$

    $$\implies x^2 + y^2 -2x + 2y – 47 = 0$$

  • Question 7
    1 / -0
    The centre of a circle is $$( x -2 , x+1 )$$ and it passes through the points $$( 4 , 4 )$$ Find the value ( or values ) of $$x$$, if the diameter of the circle is of length $$\displaystyle 2\sqrt{5}$$ units. 
    Solution
    Radius of the circle $$ = $$ dist. between the center and given pt. on the circle.

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula 

    $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Distance between the points $$ (x-2,x+1) $$ and D $$ (4,4) $$ 

    $$= \sqrt { \left( 4-x + 2 \right) ^{ 2 }+\left( 4 - x - 1 \right) ^{ 2 } } $$ 

    $$= \sqrt { \left( 6-x \right) ^{ 2 }+\left( 3 - x \right) ^{ 2 } } $$ 

    $$= \sqrt { 36 + {x}^{2} - 12x + 9 + {x}^{2} - 6x } = \sqrt { 2{x}^{2} -18x + 45 } $$

    Given, diameter $$ = 2 \sqrt {5} $$ $$\Rightarrow$$ Radius $$ = \sqrt {5} $$

    $$ \Rightarrow \sqrt { 2{x}^{2} -18x + 45 }

    = \sqrt {5} $$
    Squaring both sides,
    $$ 2{x}^{2} -18x + 45 = 5 $$
    $$ 2{x}^{2} -18x + 40 = 0 $$
    $$ {x}^{2} -9x + 20 = 0 $$
    $$ (x-5)(x-4) = 0 $$
    $$ x = 4 $$ or $$ 5 $$
  • Question 8
    1 / -0
    The equation circle whose center is $$(0,0)$$ and radius is $$4$$ is 
    Solution
    The equation of circle is $$x^2+y^2=r^2$$
    Here the radius is $$4$$
    So the equation is $$x^2+y^2=4^2\\x^2+y^2=16$$
  • Question 9
    1 / -0
    Two circles touch each other externally at C and a common tangent touches them at A and B. Which one is true?
    Solution

    According to the question

    Lets suppose that,

    X and Y are two circle touch each other at P.

    AB is the common tangent to circle X and Y at point A and B.

     According In the given figer,

    In triangle $$PAC,\ \angle CAP=\angle APC=\alpha $$

    Similarly $$CB=CP,\ \angle CPB=\angle PBC=\beta $$

    Now triangle APB,

      $$ \angle PAB+\angle PBA+\angle APB=180 $$

     $$ \alpha +\beta +\left( \alpha +\beta  \right)=180 $$

     $$ 2\alpha +2\beta =180 $$

     $$ \alpha +\beta =90 $$

     $$ \therefore \ \angle APB=90=\alpha +\beta . $$

    This is the required solution.

  • Question 10
    1 / -0
    Find the center-radius form of the equation of the circle with center $$\left( 4,0 \right) $$ and radius $$7$$
    Solution

    If $$(-g,-f)$$ is the center and $$r$$ is radius

    The $$(x + g) ^2  + (y+ f)^2 = r^2     $$ is the equation of the circle

    There $$C = (4,0) , r = 7$$

    $$\implies (x - 4) ^2  + (y - 0)^2 = 7^2$$

    $$(x – 4) ^2  + (y)^2 = 49$$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now