Self Studies

Conic Sections Test - 22

Result Self Studies

Conic Sections Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle whose centre and radius are $$\left( 1,-1 \right) $$ and $$4$$ respectively, is
    Solution
    We know that equation of circle is
    $${ \left( x-h \right)  }^{ 2 }+{ \left( y-k \right)  }^{ 2 }={ r }^{ 2 }$$
    Here, centre is $$\left( 1,-1 \right) $$ and radius is $$4$$.
    $$\therefore $$ Equation is
    $${ \left( x-1 \right)  }^{ 2 }+{ \left( y+1 \right)  }^{ 2 }={ \left( 4 \right)  }^{ 2 }$$
    $$\Rightarrow { x }^{ 2 }+1-2x+{ y }^{ 2 }+1+2y=16$$
    $$\Rightarrow { x }^{ 2 }+{ y }^{ 2 }-2x+2y-14=0$$
  • Question 2
    1 / -0
    For hyperbola $$\dfrac{x^2}{cos^2a}-\dfrac{y^2}{sin^2a}=1$$ which of the following remains constant with change in 'a'?
    Solution
    Comparing given equation $$\dfrac{x^2}{cos^2a}-\dfrac{y^2}{sin^2a}=1$$ with the standard equation $$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2} =1$$, we get
    $$a^2 = cos^2 a$$ and $$b^2 = sin^2 a$$
    $$\therefore 1=sin^2 a + cos^2 a = a^2 + b^2$$
    $$\Rightarrow e=\sqrt { \dfrac { { a }^{ 2 }+{ b }^{ 2 } }{ { a }^{ 2 } }  } $$ 
    $$\Rightarrow e=\dfrac{1}{cos\,a}$$
    Now, foci $$ae=cos\,a.\dfrac{1}{cos\,a}=1$$
  • Question 3
    1 / -0
    The distance between the foci of the hyperbola $${ x }^{ 2 }-3{ y }^{ 2 }-4x-6y-11=0$$ is
    Solution
    Given, equation of hyperbola is
    $${ x }^{ 2 }-3{ y }^{ 2 }-4x-6y-11=0$$
    $$\Rightarrow \left( { x }^{ 2 }-4x+4 \right) -3\left( { y }^{ 2 }+2y+1 \right) -11=4-3$$
    $$\Rightarrow { \left( x-2 \right)  }^{ 2 }-3{ \left( y+1 \right)  }^{ 2 }=12$$
    $$\Rightarrow \dfrac { { \left( x-2 \right)  }^{ 2 } }{ 12 } -\dfrac { { \left( y+1 \right)  }^{ 2 } }{ 4 } =1$$
    Now, $$e=\sqrt { 1+\dfrac { 4 }{ 12 }  } =\dfrac { 2 }{ \sqrt { 3 }  } $$
    $$\therefore $$ Distance between foci $$=2ae=2\times \sqrt { 12 } \times \dfrac { 2 }{ \sqrt { 3 }  } =8$$
  • Question 4
    1 / -0
    The equation of the ellipse having vertices at $$\displaystyle \left( \pm 5,0 \right) $$ and foci $$\displaystyle \left( \pm 4,0 \right) $$ is
    Solution
    The vertices and foci of an ellipse are $$\displaystyle \left( \pm 5,0 \right) $$ and $$\displaystyle \left( \pm 4,0 \right) $$ respectively.
    $$\displaystyle \therefore \quad a=5$$ and $$\displaystyle ae=4$$
    $$\displaystyle \Rightarrow \quad e=\frac { 4 }{ 5 } $$
    We know that,
    $$\displaystyle e=\sqrt { 1-\frac { { b }^{ 2 } }{ { a }^{ 2 } }  } $$
    $$\displaystyle \Rightarrow \quad \frac { 16 }{ 25 } =1-\frac { { b }^{ 2 } }{ 25 } \Rightarrow { b }^{ 2 }=9$$
    Hence, equation of an ellipse is
    $$\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 9 } =1\Rightarrow 9{ x }^{ 2 }+25{ y }^{ 2 }=225$$
  • Question 5
    1 / -0
    The equation of a parabola which passes through the intersection of a straight line x$$+$$y$$=0$$ and the circle $$x^2+y^2+4y=0$$ is.
    Solution
    $$x+y=0$$
    $$x^2+y^2+4y=0$$
    The line and the circle intersect at the point $$(0,0)$$ and $$(2,-2)$$
    Among the given options, only $$y^2=2x$$ passes through both these points.

    So, the answer is option (C).
  • Question 6
    1 / -0
    The equation to the circle with centre $$(2, 1)$$ and touching the line $$3x + 4y = 5$$ is
    Solution
    The distance from the line $$ax+by+c=0$$ from the line to a point $$(x_0,y_0)$$ is:
    $$D=\dfrac { \left| a{ x }_{ 0 }+b{ y }_{ 0 }+c \right|  }{ \sqrt { a^{ 2 }+{ b }^{ 2 } }  }$$
    Here, the distance is equal to the radius of the circle and the distance from the line $$3x+4y-5=0$$ to a point $$(2,1)$$ is:
    $$r=\dfrac { \left| (3\times 2)+(4\times 1)+(-5) \right|  }{ \sqrt { 3^{ 2 }+{ 4 }^{ 2 } }  } =\dfrac { \left| 6+4-5 \right|  }{ \sqrt { 9+16 }  } =\dfrac { \left| 5 \right|  }{ \sqrt { 25 }  } =\dfrac { 5 }{ 5 } =1$$
    Therefore, equation of the circle with centre $$(2,1)$$ and radius $$1$$ is:
    $${ \left( x-2 \right)  }^{ 2 }+{ \left( y-1 \right)  }^{ 2 }={ \left( 1 \right)  }^{ 2 }\\ \Rightarrow { x }^{ 2 }+4-4x+{ y }^{ 2 }+1-2y=1\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }-4x-2y+5=1\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }-4x-2y+4=0$$
    Hence, the equation of circle is $$x^2+y^2-4x-2y+4=0$$.
  • Question 7
    1 / -0
    Find the equation of a circle with center $$(2,0)$$ and passing through point $$\left( 3,\sqrt { 3 }  \right) $$. 
    Solution
    Let the radius be '$$r$$'. 
    Then the equation of the circle will be
    $$(x-2)^{2}+y^{2}=r^{2}$$
    Now, substituting the point $$(3,\sqrt{3})$$ in the above equation gives us $$(3-2)^{2}+(\sqrt{3})^{2}=r^{2}$$ 
    $$\Rightarrow 1+3^{2}=r^{2}$$ or $$r^{2}=4$$
    Hence, the equation of the circle is $$(x-2)^{2}+y^{2}=4$$.
  • Question 8
    1 / -0
    If $$(a,b)$$ lies on circle with centre as origin, then its radius will be
    Solution
    We know the formula,

    The equation of a circle of radius r and centre the origin is

    $$x^2+y^2=r^2$$

    Here the center is (a, b)

    so Radius , $$r = \sqrt{a^2+b^2}$$

  • Question 9
    1 / -0
    The radius of the circle $$x^{2} + y^{2} + 4x + 6y + 13 = 0$$ is
    Solution
    Given equation is
    $$x^{2} + y^{2} + 4x + 6y + 13 = 0$$
    or $$(x^{2} + 4x + 4) + (y^{2} + 6y + 9) + 13 = 4 + 9$$
    or $$(x + 2)^{2} (y + 3)^{2} = 0$$
    $$\therefore$$ Radius of circle $$= 0$$.
  • Question 10
    1 / -0
    The sum of the focal distances of any point on the conic $$\dfrac {x^{2}}{25} + \dfrac {y^{2}}{16} = 1$$ is
    Solution
    We know, if P is any point on the curve, then Sum of focal distances $$=$$ length of major axis
    i.e., $$SP + S'P = 2a$$
    $$= 2(5) [\because a^{2} = 5^{2}]$$
    $$= 10$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now