Self Studies

Conic Sections Test - 24

Result Self Studies

Conic Sections Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the approximate radius of the circle whose equation is $$(x-\sqrt{3})^2+(y+2)^2=11$$?
    Solution
    • The radius of given circle is $$\sqrt{11} = 3.32$$
  • Question 2
    1 / -0
    Which of the following is an equation of a circle in the $$xy$$-plane with center $$\left(0, 4\right)$$ and a radius with endpoint $$\left(\dfrac{4}{3}, 5\right)$$?
    Solution
    Given, center of circle is $$(0,4)$$ and point on circle $$\left (\dfrac 43,5\right)$$
    $$\therefore$$ radius of circle $$=\sqrt {\left (\dfrac 43-0\right)^2+(5-4)^2}$$
                                     $$= \sqrt {\dfrac {16}{9}+1}=\sqrt {\dfrac {25}9}$$
    Since, Equation of the circle having centre $$(x_1,y_1)$$ and radius '$$r$$' is
    $$(x-x_1)^2+(y-y_1)^2=r^2$$
    $$\therefore$$ Equation of given circle $$= (x-0)^2+(y-4)^2=\left (\sqrt {\dfrac {25}9}\right)^2$$
                                                    $$= x^2+(y-4)^2=\dfrac {25}9$$
    Hence, option A is correct.
  • Question 3
    1 / -0
    Identify the polynomial represented by the graph?

    Solution

  • Question 4
    1 / -0
    The least value of $$2x^{2} + y^{2} + 2xy + 2x - 3y + 8$$ for real numbers $$x$$ and $$y$$ is
    Solution
    $$E = 2x^{2} + y^{2} + 2xy + 2x - 3y + 8$$

    $$\Rightarrow E =  \dfrac {1}{2} (4x^{2} + 2y^{2} + 4xy + 4x - 6y + 16)$$

    $$\Rightarrow E= \dfrac {1}{2}\left \{(y - 4)^{2} + (2x + y + 1)^{2} - 1\right \} \geq - \dfrac {1}{2}$$

    This happen when the $$\left \{(y - 4)^{2} + (2x + y + 1)^{2} - 1\right \} = -1$$
    Which i possible when $$(x,y) \equiv \left(-\dfrac52,4\right)$$

    So, least value is $$-\dfrac {1}{2}$$
  • Question 5
    1 / -0
    Locus of the point $$(\sqrt{3h} , \sqrt{3k + 2} )$$ if it lies on the line $$x-  y-  1 = 0$$ is a
    Solution
    Locus of point $$\left( \sqrt { 3h } ,\sqrt { 3k+2 }  \right) $$ if it lies on line $$x-y-1=0$$ is :
    $$\sqrt { 3 } h-\sqrt { 3k+2 } -1=0\\ { (\sqrt { 3 } h-1) }^{ 2 }={ (\sqrt { 3k+2 } ) }^{ 2 }\\ { 3k }^{ 2 }+1-2\sqrt { 3 } h=3k+2\\ \left( h-\cfrac { 1 }{ \sqrt { 3 }  }  \right) ^{ 2 }=3\left( k+\cfrac { 2 }{ 9 }  \right) \\ x^{ 2 }=3y$$ 
    Which is parabola.
  • Question 6
    1 / -0
    The length of the latus rectum of the parabola whose vertex is $$(2, -3)$$ and the directrix $$x = 4$$ is
    Solution
    Distance of vertex $$(2,-3)$$ from directrix $$x=4$$ is 
    $$\quad \quad =\left|\dfrac{2-4}{\sqrt{1^2+0^2}} \right|=2$$
    So length of latue rectum of above parabola is 
    $$=4\times $$ distance of vertex to directrix $$=4\times 2=8$$
  • Question 7
    1 / -0
    The graph of the equation $$x^2+\dfrac{y^2}{4}=1$$ is
    Solution
    Given, $${x}^{2}+\dfrac{{y}^{2}}{4}=1$$
    It is in the form of  $$ \dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1$$
    Therefore, it represents an ellipse.
  • Question 8
    1 / -0
    Which ordered number pair represents the center of the circle $$x^2 + y^2 - 6x + 4y - 12 = 0$$?
    Solution
    The equation of circle is $$x^{ 2 }+y^{ 2 }-6x+4y-12=0$$
    $$\Rightarrow x^2-6x+9+y^2+4y+4=12+13$$
    $$\Rightarrow (x-3)^{ 2 }+(y+2)^{ 2 }=25$$
    Comparing above equation with $$(x-h)^2+(y-k)^2=r^2$$
    Therefore, we get the center of circle as $$(3,-2)$$.
  • Question 9
    1 / -0
    Equation of circle with center (-a, -b) and radius $$\sqrt{a^2-b^2}$$ is.
    Solution
    Fact: equation of circle with centre $$(h,k)$$ and radius $$r$$ is given by 

    $$(x-h)^2+(y-k)^2=r^2$$

    Hence equation of circle with centre $$(-a,-b)$$ having radius $$\sqrt{a^2-b^2}$$ is given by,

    $$(x+a)^2+(y+b)^2=a^2-b^2$$

    $$\Rightarrow x^2+y^2+2ax+2by+a^2+b^2=a^2-b^2$$


    $$\Rightarrow x^2+y^2+2ax+2by+2b^2=0$$

  • Question 10
    1 / -0
    The asymptotes of a hyperbola $$4x^2 - 9y^2=36$$ are
    Solution
    The equation of hyperbola is $$\displaystyle \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$$
    So the equation of asymptotes is $$\displaystyle \frac{x^{2}}{9}-\frac{y^{2}}{4}=0$$
    $$\Rightarrow 4x^{2}-9y^{2}=0$$
    $$\Rightarrow 2x \pm 3y=0$$
    Therefore option $$B$$ is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now