Self Studies

Conic Sections Test - 25

Result Self Studies

Conic Sections Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of hyperbola whose coordinates of the foci are $$(\pm8,0)$$ and the lenght of latus rectum is $$24$$ units, is
    Solution
    The Foci of hyperbola are $$(\pm8,0)$$, hence Foci lie on $$x$$ - axis. 

    We know that foci of hyperbola lie at $$(\pm ae,0)$$, So $$ae = 8$$ ...$$(1)$$

    squaring both sides of equation $$(1)$$, we get,

    $$\Rightarrow a^2e^2 = 64$$

    Eccentricity of hyperbola $$e^2 =1 + \dfrac {b^2}{a^2}$$  

    $$\Rightarrow a^2(1+\dfrac{b^2}{a^2}) = 64$$

    $$\Rightarrow a^2 + b^2 = 64$$ ...$$(2)$$

    Now the length of latus rectum is given as 24 units.

    length of latusrectum of hyperbola $$ = \dfrac{2b^2}{a} = 24$$

    $$\Rightarrow b^2 = 12a$$ ...$$(3)$$

    putting value of $$b^2$$ in eq. $$(2)$$, we get,

    $$\Rightarrow a^2 +12a -64 = 0$$

    Hence $$a  = 4, -16$$

    As $$a$$ is always taken as positive value so $$a =4$$ 

    from eq. $$(3)$$,  $$b = \sqrt{48}$$

    Hence equation of hyperbola is $$\dfrac{x^2}{16} -\dfrac {y^2}{48} = 1$$

    Or $$3x^2 -y^2 = 48$$, So correct option is $$A$$.
  • Question 2
    1 / -0
    The lines $$2x - 3y - 5 = 0$$ and $$3x -4y = 7$$ are diameters of a circle of area 154 sq units, then the equation of the circle is.( Use $$\pi = \dfrac{22}{7}$$)
    Solution
    The centre of the required circle lies at the intersection of $$2x - 3y- 5 = 0$$ and $$3x - 4y - 7 = 0$$.

    Thus, the coordinates of the centre are $$(1, -1)$$.

    Let $$r$$ be the radius of the circle. 

    $$\pi r^2 =154 $$

    $$\Rightarrow \dfrac{22}{7}r^2=154 \Rightarrow r=7$$

    Hence, the equation of required circle is $$(x -1)^2 +(y+ 1)^2= 7^2$$ 

    $$\Rightarrow x^2+y^2-2x+2y-47=0$$
  • Question 3
    1 / -0
    Let $$ABCD$$ be a square of side length $$1$$. and $$\Gamma $$ a circle passing through $$B$$ and $$C$$, and touching $$AD$$. The radius of $$\Gamma $$ is
    Solution
    $$PC=r$$
    $${ PC }^{ 2 }={ r }^{ 2 }$$
    $${ \left( r-1 \right)  }^{ 2 }+{ \left( \cfrac { 1 }{ 2 } -1 \right)  }^{ 2 }={ r }^{ 2 }$$
    $$1-2r+\cfrac { 1 }{ 4 } =0$$
    $$r=\cfrac { 5 }{ 8 } $$

  • Question 4
    1 / -0
    Consider the parametric equation
    $$x = \dfrac {a(1 - t^{2})}{1 + t^{2}}, y = \dfrac {2at}{1 + t^{2}}$$.
    What does the equation represent?
    Solution
    $$x=\dfrac { a(1-{ t }^{ 2 }) }{ 1+{ t }^{ 2 } }, y=\dfrac { 2at }{ 1+{ t }^{ 2 } }$$ 
    Let $$t=\tan\theta$$ 
    $$\Rightarrow x=a\sin 2\theta , y=a\cos 2\theta \\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$$
    It represents a circle of radius $$a$$.
  • Question 5
    1 / -0
    What is the radius of the circle passing through the point $$(2, 4)$$ and having centre at the intersection of the lines $$x - y = 4$$ and $$2x + 3y + 7 = 0$$?
    Solution
    The line $$x-y=4$$ and $$2x+3y+7=0$$ intersect at the point $$(1,-3)$$
    So, the centre of circle lies at $$(1,-3)$$

    Point $$(2,4)$$ lies on the circle.
    So, radius = distance of $$(2,4)$$ from $$(1,-3)$$
    $$=\sqrt{(2-1)^2+(4-(-3)^2}$$
    $$=\sqrt{1^2+7^2}$$
    $$=\sqrt{50}$$
    $$=5\sqrt2$$ units

    So, the answer is option (D)
  • Question 6
    1 / -0
    The differential equation $$(3x + 4y + 1)dx + (4x + 5y + 1) dy = 0$$ represents a family of
    Solution
    The given differential equation is
    $$(3x + 4y + 1)dx + (4x + 5y + 1)dy = 0... (i)$$
    Comparing eq. (i) with $$Mdx + Ndy = 0$$,
    we get
    $$M = 3x + 4y + 1$$
    and $$N = 4x + 5y + 1$$
    Here, $$\dfrac {\partial M}{\partial y} = \dfrac {\partial N}{\partial x} = 4$$
    Hence, eq. (i) is exact and solution is given by
    $$\int (3x + 4y + 1)dx + \int (4x + 5y + 1)dy = C$$
    $$\Rightarrow \dfrac {3x^{2}}{2} + 4xy + x + 4xy + \dfrac {5y^{2}}{2} + y - C = 0$$
    $$\Rightarrow 3x^{2} + 16xy + 2x + 5y^{2} + 2y - 2C = 0$$
    $$\Rightarrow 3x^{2} + 2\times 8xy + 2x + 5y^{2} + 2y + C' = 0 ... (ii)$$
    where, $$C' = -2C$$
    On comparing eq. (ii) with standard form of conic section
    $$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + C = 0$$
    We get,
    $$a = 3, h = 8, b = 5$$
    Here, $$h^{2} - ab = 64 - 15 = 49 > 0$$
    Hence, the solution of differential equation represents family of hyperbolas.
  • Question 7
    1 / -0
    The line $$(x-2)\cos \theta +(y-2)\sin \theta =1$$ touches a circle for all value of $$\theta$$, then the equation of circle is
    Solution
    Given line is
    $$(x-2)cos \,\theta +(y-2)sin\, \theta =1$$
    $$\Rightarrow (x-2)cos \theta +(y-2)sin\theta=cos^2 \, \theta+sin^2\, \theta$$
    On compaining we get,
    $$(x-2) = cos\theta $$ ..... $$(i)$$
    $$(y-2) = sin \theta$$ ..... $$(ii)$$
    On squaring and then adding Eqs. $$(i)$$ and $$(ii),$$ we get
    $$(x-2)^2+(y-2)^2=cos^2\theta +sin^2 \theta$$
    $$\Rightarrow (x-2)^2+(y-2)^2=1$$
    $$\Rightarrow x^2+y^2-4x-4y+7=0$$
  • Question 8
    1 / -0
    The latus rectum of the ellipse is half the minor axis. Then its eccentricity is
    Solution
    $$\textbf{Step-1: Finding relation between a and b}$$
                    $$\text{Latus rectum of ellipse is half of the minor axis}$$

                    $$\Rightarrow \text{L.R} = \dfrac{{2{b^2}}}{a} = {b}$$

                    $$ \Rightarrow \dfrac{b}{a} = \dfrac{1}{2}$$              $$\dots(1)$$

    $$\textbf{Step-2: Eccentricity of ellipse is given as-}$$

                     $$e = \sqrt {1 - {{\left( {\dfrac{b}{a}} \right)}^2}} $$ $$\dots(2)$$

    $$\textbf{Step-3: Putting values (1) in (2)}$$

                      $$e = \sqrt {1 - {{\left( {\dfrac{b}{a}} \right)}^2}}$$

                         $$ = \sqrt {1 - {{\left( {\dfrac{1}{2}} \right)}^2}}  $$

                         $$= \sqrt {1 - \dfrac{1}{{4}}} $$

                         $$ = \sqrt {\dfrac{{3}}{{4}}}$$

    $$\textbf{ So, the eccentricity of ellipse is given by (C)}$$ $$ \mathbf{{\dfrac{{\sqrt3}}{{2}}}}. $$

  • Question 9
    1 / -0
    The equation of the smallest circle passing through the points $$(2, 2)$$ and $$(3, 3)$$ is
    Solution
    If the smallest circle is drawn through the points $$(2,2)$$ and $$(3,3)$$ then, the point have to be the opposite end of the diameter of the circle.
    Therefore, the centre of the circle is $$C=(\dfrac{5}{2},\dfrac{5}{2})$$.
    The radius of the circle is $$R=\dfrac{\sqrt{2}}{2}$$ ....(using distance formula)
    Hence equation of the circle is
    $$(x-\dfrac{5}{2})^{2}+(y-\dfrac{5}{2})^{2}=\dfrac{1}{2}$$
    $$x^{2}+y^{2}-5x-5y+\dfrac{50}{4}=\dfrac{1}{2}$$
    Or
    $$x^{2}+y^{2}-5x-5y+\dfrac{25}{2}-\dfrac{1}{2}=0$$
    Or
    $$x^{2}+y^{2}-5x-5y+12=0$$.
  • Question 10
    1 / -0
    If focii of $$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$$ coincide with the focii of $$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$$ and eccentricity of the hyperbola is $$2$$, then
    Solution
    For the ellipse, $$a=5, b=3$$ and $$e=\sqrt{\dfrac{25-9}{25}}=\dfrac{4}{5}$$
    $$\therefore ae=4$$
    Hence, the focii are $$(-4, 0)$$ and $$(4, 0)$$
    As the focii of ellipse and hyperbola coincide
    For the hyperbola, $$ae=4, e=2$$
    $$\therefore a=2$$
    $$b^2=a^{2}(e^{2}-1)=4(4-1)=12$$
    $$\therefore b=\sqrt{12}$$
    Length of latus rectum 
    $$=\dfrac{2 b^2}{a}=2 \times \dfrac{12}{2}$$
    $$=12$$
    Hence, option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now