Self Studies

Conic Sections Test - 26

Result Self Studies

Conic Sections Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ends of the latus rectum of the parabola $$x^{2} + 10x - 16y + 25 = 0$$ are
    Solution
    The equation $$x^{2} + 10x - 16y + 25 = 0$$ can be written as
    $$(x+5)^2=16y$$ .... $$(i)$$  here $$a=4$$ and vertex will be $$-5,0$$ and focus will be $$-5,4$$.
    So, the y-coordinate of ends of latus rectum will be $$4$$.
    Putting in equation we have,
    $$(x+5)^2=16\times 4=64$$
    We have $$x=3,-13$$
    Substituting $$x$$ in $$(i)$$, we get $$y=4,4$$
    Hence, ends of latus rectum will be $$(-3,4), (-13,4)$$
  • Question 2
    1 / -0
    If $$e_{1}$$ and $$e_{2}$$ are the eccentricities of two conics with $$e_{1}^{2} + e_{2}^{2} = 3$$, then the conics are.
    Solution
    Given, $${ e }_{ 1 }^{ 2 }+{ e }_{ 2 }^{ 2 }=3$$  
    $${ e }_{ 1 }$$ and $${ e }_{ 2 }$$ are eccentricities of same type of conic.
    Let $${ e }_{ 1 }={ e }_{ 2 }$$
    $$\therefore 2{ e }_{ 1 }^{ 2 }=3$$ (from given equation)
    $${ e }_{ 1 }^{ 2 }=\cfrac { 3 }{ 2 } =1.5$$ 
    $${ e }_{ 1 }=\sqrt { 1.5 } >1$$ 
    $$\therefore { e }_{ 1 }={ e }_{ 2 }>1$$
    $$\therefore $$ Both conics are Hyperbolas. $$\because { e>1 } $$
  • Question 3
    1 / -0
    The line segment joining the foci of the hyperbola $$x^{2} - y^{2} + 1 = 0$$ is one of the diameters of a circle. The equation of the circle is :
    Solution
    $$x^{2} - y^{2} + 1 = 0\implies (x-0)^{2}+(y-0)^{2}=0$$ 
    Foci of the given hyperbola $$= (0, \pm \sqrt {2})$$ 
    Centre of the hyperbola is $$(0,0)$$
    Diameter of the circle is the distance between foci of the hyperbola and which is given by
    $$D=\sqrt{(0-0)^{2}+(\sqrt{2}+\sqrt{2})^{2}}=2\sqrt{2}$$
    Centre of the circle will be same as that of the hyperbola
    $$\therefore Centre = (0, 0)$$ and $$Radius = \sqrt {2}$$
    $$\therefore$$ Equation of the circle is $$x^{2} + y^{2} = 2$$
  • Question 4
    1 / -0
    Consider the conic $$e{ x }^{ 2 }+\pi { y }^{ 2 }-2{ e }^{ 2 }x-2{ \pi  }^{ 2 }y+{ e }^{ 3 }+{ \pi  }^{ 3 }=\pi e$$. Suppose $$P$$ is any point on the conic and $${ S }_{ 1 }, { S }_{ 2 }$$ are the foci of the conic, then the maximum value of $$\left( P{ S }_{ 1 }+P{ S }_{ 2 } \right) $$ is
    Solution
    $$\displaystyle{e{ x }^{ 2 }+\pi { y }^{ 2 }+-2{ e }^{ 2 }x-2{ \pi  }^{ 2 }y+{ e }^{ 3 }+{ \pi  }^{ 3 }=\pi e\\ e({ x }^{ 2 }-2ex+{ e }^{ 2 })+\pi ({ y }^{ 2 }-2\pi y+{ \pi  }^{ 2 })=\pi e\\ \quad \dfrac { { \left( x-e \right)  }^{ 2 } }{ \pi  } +\dfrac { { \left( y-\pi  \right)  }^{ 2 } }{ e } =1\\ }$$
    $$a=\sqrt { \pi  } ,b=\sqrt { e } $$
    for ellipse sum of focal distance $$PS+PS^{\prime} $$ is $$2a$$
    So $$PS+PS^{\prime} =2\sqrt { \pi  } $$
    option $$C$$ is correct
  • Question 5
    1 / -0
    The eccentricity of an ellipse $$9{ x }^{ 2 }+16{ y }^{ 2 }=144$$ is
    Solution
    Given equation of an ellipse is
    $$9{ x }^{ 2 }+16{ y }^{ 2 }=144$$
    $$\Rightarrow \dfrac { 9{ x }^{ 2 } }{ 144 } +\dfrac { 16{ y }^{ 2 } }{ 144 } =\dfrac { 144 }{ 144 } $$
    $$\Rightarrow \dfrac { { x }^{ 2 } }{ 16 } +\dfrac { { y }^{ 2 } }{ 9 } =1$$
    Here, $${ a }^{ 2 }=16$$, $${ b }^{ 2 }=9$$                 $$\left[ \because { a }^{ 2 } > { b }^{ 2 } \right]$$
    $$ \therefore$$ Eccentricity $$ \left( e \right) =\sqrt { 1-\dfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } =\sqrt { 1-\dfrac { 9 }{ 16 }  } =\sqrt { \dfrac { 7 }{ 16 }  } =\dfrac { \sqrt { 7 }  }{ 4 } $$.
  • Question 6
    1 / -0
    The directrix of a parabola is $$x+8=0$$ and its focus is at $$(4,3)$$. Then, the length of the latusrectum of the parabola is
    Solution
    Equation of parabola is
    $$\left| x+8 \right| =\sqrt { { (x-4) }^{ 2 }+{ (y-3) }^{ 2 } } $$
    $$\Rightarrow {x}^{2}+64+16x={x}^{2}+16-8x+{(y-3)}^{2}$$
    $$\Rightarrow { (y-3) }^{ 2 }=24(x+2)$$
  • Question 7
    1 / -0
    The one end of the latusrectum of the parabola $${ y }^{ 2 }-4x-2y-3=0$$ is at
    Solution
    Given equation is $${ y }^{ 2 }-4x-2y-3=0$$
    $$\Rightarrow \left( { y }^{ 2 }-2y \right) =4x+3$$
    $$\Rightarrow { \left( y-1 \right)  }^{ 2 }-1=4x+3$$
    $$\Rightarrow { \left( y-1 \right)  }^{ 2 }=4\left( x+1 \right) $$
    Shift the origin to $$\left( -1,1 \right) $$
    $$\Rightarrow { Y }^{ 2 }=4X$$
    Here focus is at $$\left( 1,0 \right) $$.
    Hence, focus of original parabola becomes $$\left( 1-1,0+1 \right) =\left( 0,1 \right) $$
    Therefore, equation of latusrectum is $$x=0$$.
    Thus point of intersection of parabola and latus rectum is
    $${ y }^{ 2 }-2y-3=0\Rightarrow y=-1$$ or $$3$$
    So, the required points are $$\left( 0,-1 \right) ,\left( 0,3 \right) $$.
  • Question 8
    1 / -0
    The foci of the ellipse $$4{x}^{2}+9{y}^{2}=1$$ are
    Solution
    Given, $$4{ x }^{ 2 }+9{ y }^{ 2 }=1..(i)$$
    We can write EQ.(i) as
    $$\quad \cfrac { { x }^{ 2 } }{ { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { \left( \cfrac { 1 }{ 3 }  \right)  }^{ 2 } } =1\quad $$
    Here, $$a=\cfrac { 1 }{ 2 } ;b=\cfrac { 1 }{ 3 } $$
    $$\because$$ $$a> b$$
    $$\because a>b$$
    $$\therefore e=\sqrt { 1-\cfrac { \cfrac { 1 }{ 9 }  }{ \cfrac { 1 }{ 4 }  }  } =\sqrt { 1-\cfrac { 4 }{ 9 }  } =\cfrac { \sqrt { 5 }  }{ 3 } $$
    Here foci$$=\left( \pm ae,0 \right) $$
    $$=\left( \pm \cfrac { 1 }{ 2 } \cfrac { \sqrt { 5 }  }{ 3 } ,0 \right) =\left( \pm \cfrac { \sqrt { 5 }  }{ 6 } ,0 \right) \quad $$
  • Question 9
    1 / -0
    If the eccentricity of the hyperbola $${ x }^{ 2 }-{ y }^{ 2 }\sec ^{ 2 }{ \alpha  } =5$$ is $$\sqrt { 3 } $$ times the eccentricity of the ellipse $${ x }^{ 2 }\sec ^{ 2 }{ \alpha  } +{ y }^{ 2 }=25$$, then the value of $$\alpha $$ is
    Solution
    Equation for ellipse can be written as
    $$\dfrac{x^2}{25\cos ^2\alpha}+\dfrac{y^2}{25}=1$$
    the eccentricity of the given ellipse 
    $$e_e^2=1-\dfrac{25\cos^2\alpha}{25}=\sin^2\alpha$$
    And the eccentricity  of the Hyperbola is given as 
    $$e_e^2=1+\dfrac{5\cos^2\alpha}{5}=1+\cos^2\alpha$$
    $$e_h^2=3e_e^2$$ (given in the question)
    $$1+\cos^2\alpha=3\sin^2\alpha\\ \sin^2\alpha=1/2\\ \alpha=\dfrac{\pi}{4}$$

  • Question 10
    1 / -0
    If the eccentricity of the ellipse $$a{ x }^{ 2 }+4{ y }^{ 2 }=4a,(a<4)$$ is $$\cfrac { 1 }{ \sqrt { 2 }  } $$, then its semi-minor axis is equal to
    Solution
    Given equation of ellipse is
    $$a{ x }^{ 2 }+4{ y }^{ 2 }=4a...(i)\quad $$
    We can write Eq.(i) as
    $$\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { y }^{ 2 } }{ a } =1$$
    Here $$\quad { a }^{ 2 }=4;{ b }^{ 2 }=a$$
    $$\because a<4$$
    $$\therefore e=\sqrt { 1-\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } $$
    $$\Rightarrow \cfrac { 1 }{ \sqrt { 2 }  } =\sqrt { 1-\cfrac { a }{ 4 }  } \Rightarrow \cfrac { 1 }{ 2 } =1-\cfrac { a }{ 4 } $$
    $$\Rightarrow \cfrac { a }{ 4 } =\cfrac { 1 }{ 2 } \Rightarrow a=2$$
    $$\therefore { b }^{ 2 }=2\Rightarrow b=\sqrt { 2 } $$
    Hence, semi-minor axis is $$b=\sqrt{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now