Self Studies

Conic Sections Test - 31

Result Self Studies

Conic Sections Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of the parabola having focus $$(3,2)$$ and Vertex $$(-1,2)$$ is 
    Solution
    Equation of a General Parabola having axis along the x-axis  is given by $$y^2=4ax$$

    where $$a=$$ distance between Vertex and Focus.

    Here $$y$$ coordinate in Focus and Vertex is the same.

    Thus this parabola would be along direction of the x-axis.

    Diatance between vertex and focus $$=\sqrt{(3-(-1))^2+(2-2)^2}=4$$

    thus equation of parabola is $$(y-2)^2=4.(4)(x-(-1))$$

    i.e.$$(y-2)^2=16(x+1)$$
  • Question 2
    1 / -0

    Directions For Questions

    Equation of a circle is  $$S={x}^{2}+{y}^{2}+2gx+2fy+c$$
    Its notation is $${S}_{1}={x}_{1}x+{y}_{1}y+g\left(x+{x}_{1}\right)+f\left({y}_{1}+y\right)+c$$
    $${S}_{11}={x}_{1}^{2}+{y}_{1}^{2}+2g{x}_{1}+2f{y}_{1}+c$$
    $$\left(i\right)$$Location of $$P\left({x}_{1},{y}_{1}\right):$$
    $$P$$ lies inside the circle $$S=0$$, if $${S}_{11}<0$$
    $$P$$ lies outside the circle $$S=0$$ if $${S}_{11}>0$$
    $$P$$ lies on the circle $$S=0,$$ if $${S}_{11}=0$$
    $$\left(ii\right)$$Tangent at $$P\left({x}_{1},{y}_{1}\right)$$ on the circle $$S=0,$$ is $${S}_{1}=0$$
    $$\left(iii\right)$$ Length of the tangent from the point $$\left({x}_{1},{y}_{1}\right)$$ to the circle $$S=0$$ is $$\sqrt{{S}_{11}}$$
    $$\left(iv\right)$$Pair of tangents $$PQ,PR$$ from $$P\left({x}_{1},{y}_{1}\right)$$ is $${S}_{1}^{2}={S}_{11}S$$
    $$\left(v\right)$$Chord of contact $$QR$$ of tangents from $$P\left({x}_{1},{y}_{1}\right)$$ is $${S}_{1}=0$$
    $$\left(vi\right)$$Chord of $$S=0$$ with midpoint $$\left({x}_{1},{y}_{1}\right)$$ is $${S}_{1}={S}_{11}$$
    Based on the above information,answer the following questions:

    ...view full instructions

    The equation of the circle whose radius is $$5$$units and which touches the circle, $${x}^{2}+{y}^{2}-2x-4y-20=0$$ at the point $$\left(5,5\right)$$ is
    Solution
    The given circle is $${x}^{2}+{y}^{2}-2x-4y-20=0$$ has its centre 
    $$-2g=-2$$ or $$g=1$$
    $$-2f=-4$$ or $$f=2$$$
    Thus, the centre is at $$C\left(1,2\right)$$
    and radius$$=r=\sqrt{{g}^{2}+{f}^{2}-c}=\sqrt{{1}^{2}+{2}^{2}-\left(-20\right)}=5$$units
    We have $${O}_{1}=\left(1,2\right)$$ and Let $${O}_{2}=\left(\alpha,\beta\right)$$ be the centres $$A\left(5,5\right)$$ is the mid-point of $${O}_{1}{O}_{2}$$
    $$\therefore \dfrac{1+\alpha}{2}=5, \dfrac{2+\beta}{2}=5$$
    On simplifying ,we get
    $$\alpha=9,\beta=8$$
    The circle is $${\left(x-9\right)}^{2}+{\left(y-8\right)}^{2}={5}^{2}$$
    or $${x}^{2}+{y}^{2}-18x-16y+120=0$$
  • Question 3
    1 / -0
    If the line $$y = x \sqrt{3} - 3$$ cuts the parabola $$y^2 = x + 2$$ at $$P$$ and $$Q$$ and if $$A$$ be the points $$(\sqrt{3}, 0)$$ , then $$AP.AQ$$ is
    Solution
    Parabola: $$y^2=x+2 ..........(1)$$
    Line: $$y=x\sqrt{3}-3 ...........(2)$$
    $$A(\sqrt3 ,0)$$ lies on $$(2)$$ and at $$x-axis$$,
    $$P$$ with respect to $$A,$$ is $$P=(\sqrt3+rcos60°, rsin60°)$$
    $$=(\sqrt{3} +\cfrac{r} {2},\cfrac { \sqrt { 3r }  }{ 2 }  )$$   (where $$r=PA)$$
    $$P$$ is on Parabola,
                                 $$=>({ \cfrac { \sqrt { 3 } r }{ 2 }  })^{ 2 }=\sqrt { 3 } +\cfrac { r }{ 2 } +2$$
                                 $$=>\cfrac { { 3r }^{ 2 } }{ 4 } =\sqrt { 3 } +2+\cfrac { r }{ 2 } $$
                                 $$=> { 3 }r^{ 2 }-2r+4(-\sqrt { 3 } -2)=0$$
    Is quadratic equation, having two roots say $$r_1$$ and $$r_2$$ which are lengths of $$PA$$ and $$AQ$$
    $$AP.AQ=r_1.r_2$$
    $$AP.AQ=\cfrac { 4 }{ 3 } (\sqrt { 3 } +2).$$

  • Question 4
    1 / -0
    The equation $$\dfrac{x^2}{2-a}+\dfrac{y^2}{a-5}+1=0$$ represents an ellipse if $$a\in$$
    Solution
    Given $$\dfrac{x^2}{2-a}+\dfrac{y^2}{a-5}+1=0$$
    $$\dfrac{x^2}{a-2}+\dfrac{y^2}{5-a}=1$$
    For the above equation to be an ellipse
    $$a-2\gt 0$$, $$5-a\gt0$$ and $$a-2 \neq 5-a$$
    $$a\gt2$$, $$a\lt5$$ and $$a\neq \dfrac{7}{2}$$
    $$ a \space \epsilon \left(2,\dfrac{7}{2}\right) \bigcup \left(\dfrac{7}{2},5\right)$$
  • Question 5
    1 / -0
    The equation of the latusrecta of the ellipse $$9x^{2}+4^{2}-18x-8y-23=0$$ are 
    Solution
    equation of ellipse is $${ 9x }^{ 2 }+{ 4y }^{ 2 }-18x-8y-23=0$$
    $$\Rightarrow (9x^{ 2 }-18x+9)+(4y^{ 2 }-8y+4)-23-9-4=0$$
    $$ \Rightarrow 9(x-1)^{ 2 }+4(y-1)^{ 2 }=36$$
    $$ \Rightarrow \cfrac { (x-1)^{ 2 } }{ 4 } +\cfrac { (y-1)^{ 2 } }{ 9 } =1$$
    So, equation of latus recta is $$(y-1)=\pm be$$
    $$y=1\pm \sqrt { b^{ 2 }-a^{ 2 } } \Rightarrow y=1\pm \sqrt { 5 } $$
  • Question 6
    1 / -0

    In the $$xy$$ plane,  the segment with end points$$(3,8)$$ and $$(
    5,2)$$ is the diameter of the circle. The  point $$(k,10)$$ lies on the circle for:

    Solution
    The centre of the given circle is,

    $$C\left( x,y \right)=\left( \dfrac{3+5}{2},\dfrac{8+2}{2} \right)=\left( 4,5 \right)$$

     

    The length of the diameter of the circle is,

    $$D=\sqrt{{{\left( 5-3 \right)}^{2}}+{{\left( 2-8 \right)}^{2}}}=2\sqrt{10}\ units$$

     

    Therefore,

    Radius $$=\sqrt{10}\ units$$

     

    Therefore, the equation of the required circle is,

    $${{\left( x-4 \right)}^{2}}+{{\left( y-5 \right)}^{2}}=10$$

     

    Since, the point $$\left( k,10 \right)$$ lies on the circle, we have

     $$ {{\left( k-4 \right)}^{2}}+{{\left( 10-5 \right)}^{2}}=10 $$

     $$ {{k}^{2}}-8k+16+25=10 $$

     $$ {{k}^{2}}-8k+31=0 $$

     

    This equation has no real roots. Therefore, no such value of $$k$$ exists.
  • Question 7
    1 / -0
    Find the equation of the circle which passes through the points $$(2,-2)$$ and $$(3,4)$$. And whose centre lies on the line $$x+y=2$$.
    Solution
    As $$ (2,-2)$$ passes through the circle.
    $$ { x }^{ 2 }+{ y }^{ 2 }+2gx+2fy+c=0\\ 4+4+4g-4f+c=0\\ 4g+4f+8+c=0\longrightarrow (1)$$
     As $$ (3,4)$$ passes through the circle
    $$ 25+6g+8f+c=0\longrightarrow (2)$$
     As center of a circle $$ (-g,-f)$$
    $$ -g-f=2\\ g+f=-2\longrightarrow (3)\\ 4g-4f+8+c=0\\ 4\left( g-f+2+\cfrac { c }{ 4 }  \right) =0\\ g-f+2+\cfrac { c }{ 4 } =0\\ -4=\cfrac { c }{ 4 } \\ c=-16\\ 4g-4f-8=0\times 2\\ 8g-8f-16=0\\ 6g+8f+9=0\times 1\\ 6g+8f+9=0\\ 2g=-7\\ g=\cfrac { -7 }{ 2 } \\ f=\cfrac { 3 }{ 2 } $$
    Equation of circle
    $$ { x }^{ 2 }+{ y }^{ 2 }+2\times \cfrac { 7 }{ 2 } x-2\times \cfrac { 3 }{ 2 } y-16=0$$ 
    $${ x }^{ 2 }+{ y }^{ 2 }+7x-3y-16=0$$
  • Question 8
    1 / -0
    The equation of the latus rectum of the parabola $${ x }^{ 2 }+4x+2y=0$$ is
    Solution
    Equation of Latus rectum of$${ x }^{ 2 }+4x+2y=0$$
    $$\Rightarrow { x }^{ 2 }+4x+4+2y-4=0$$
    $$\Rightarrow { (x+2) }^{ 2 }=-2\left( y-2 \right) $$
    $$\Rightarrow -\cfrac { 1 }{ 2 } { (x+2) }^{ 2 }=(y-2)$$
    $${ (x+2) }^{ 2 }=-2(y-2)$$
    $$=-4\times \cfrac { 1 }{ 2 } \left( y-2 \right) $$
    Latus rectum will be at a distance of $$a=\cfrac { 1 }{ 2 } $$
    Distance from x-axis

    $$=2-\cfrac { 1 }{ 2 } =1.5=\cfrac { 3 }{ 2 } $$
    So, $$y=\cfrac { 3 }{ 2 } $$

  • Question 9
    1 / -0
    A circle of radius $$2$$ lies in the first quadrant and touches both the axes of co-ordinates. Then the equation of the circle with centre $$(6, 5)$$ and touching the above circle externally is
    Solution
    If $$(h,k)$$ is the center and the radius is $$r$$ then the equation of the circle is given by $$(x-h)^2+(y-k)^2=r^2$$

    Given that The center of the circle $$(h,k)=(6,5)$$ and the radius $$r=2$$

    Therefore, the equation of the circle is  $$(x-6)^2+(y-5)^2=4$$
  • Question 10
    1 / -0
    The equation $$2x^2+3y^2-8x-18y+35=\lambda$$ represents?
    Solution

    Given:

    $$ 2x^{2} + 3y - 8x - 18y + 35 = \lambda  $$

    $$ 2\left (x^{2} - 4x \right ) + 3 \left ( y^{2} - 6y + 35 \right ) = \lambda  $$

    $$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = \lambda  $$

    For $$ \lambda = 0 $$, then

    $$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = 0  $$

    Thus, the point is $$ \left ( 2,3 \right ) $$.

    Hence, the correct option is ‘d’.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now