Self Studies

Conic Sections Test - 32

Result Self Studies

Conic Sections Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle having normal at $$(3, 3)$$ as $$y = x$$ and passing through $$(2, 2)$$ is:
    Solution
    $${ x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ 2x+2y\cfrac { dy }{ dx } +2g+2f\cfrac { dy }{ dx } =0.\\ \cfrac { dy }{ dx } =\cfrac { -y-x }{ y+f. } \\ \cfrac { dy }{ dx } \quad at\quad (3,3).\\ \Rightarrow \cfrac { dy }{ dx } =\cfrac { -y-3 }{ 3+f } \\ Slope\quad of\quad normal\quad at\quad this\quad point\quad =1\\ \Rightarrow -\cfrac { (g+3) }{ f+3 } (1)\quad =-1\\ \Rightarrow g+3=f+3.\\ \Rightarrow g=f.\\ \Rightarrow { x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ Circle\quad passes\quad through\quad (3,3)\& (2,2).\\ \Rightarrow g+g+bg+bg+c=0\\ \Rightarrow 12g=-18-c.\\ \Rightarrow 4+4+4g+4g+c=0.\\ 8g=-8-c.\\ -12g=-18-c\\ -4g=10\\ g=\cfrac { -5 }{ 2 } =f.\\ C=-8(g+1)\\ =-8(\cfrac { -5 }{ 2 } +1)\\ =-8\times  \cfrac { -3 }{ 2 } \\ =+12\\ \therefore \quad Equation\quad :\\ { x }^{ 2 }+y^{ 2 }-5x-5y+12=0.\\ Ans.$$
  • Question 2
    1 / -0
    The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$$ is equal to (where $$e$$ is the eccentricity of the hyperbola)
    Solution
    Let a hyperbola , $$\cfrac{x^{2}}{a^{2}}-\cfrac{y^{2}}{b^{2}}=1$$---------1
    Let the Eccentricity be e.
    End point or extremities of LR are $$(ae,\cfrac{\pm b^{2}}{a})$$
    Tangent at L$$(ae, \cfrac{b^{2}}{a})$$ will be
    $$\Rightarrow \cfrac{x(ae)}{a^{2}}-\cfrac{y(\cfrac{b^{2}}{a})}{b^{2}}=1$$ (as tangent at $$(x_{1},y_{1})$$ is $$\cfrac{xx_{1}}{a^{2}}-\cfrac{yy_{1}}{b^{2}}=1$$)
    $$\Rightarrow \cfrac{xe}{a}-\cfrac{y}{a}=1$$
    $$\Rightarrow xe-y=a \Rightarrow y=xe-a$$--------2
    General equation of a tangent in slope form $$y=mx+c$$------3
    Comparing Equation 2 & 3 , as they represent the tangents of Hyperbola,
    $$m=e$$
    The gradient i.e. slope of tangent$$=m=e$$


  • Question 3
    1 / -0
    If the equation $$\dfrac { \lambda { \left( x+1 \right)  }^{ 2 } }{ 3 } +\dfrac { { \left( y+2 \right)  }^{ 2 } }{ 4 }=1$$ represents a circle then $$\lambda=$$
    Solution
    in a circle$$x^2,y^2$$ coefficients must be same [it is the condition for the equation to be circle]

    therefore

    $$\dfrac{\lambda}{3}=\dfrac{1}{4}$$

    $$\Rightarrow \lambda=\dfrac 34$$ 

    option B 
  • Question 4
    1 / -0
    If the equation $$\dfrac{\lambda (x+1)^2}{3}+\dfrac{(y+2)^2}{4}=1$$ represents a circle then $$\lambda = ?$$
    Solution
    $$\dfrac{\lambda (x+1)^{2}}{3}+\dfrac{(y+2)^{2}}{4}=1$$

    for a circle of $$a(x-\alpha )^{2}+6(y-\beta )^{2}=1$$ then $$(a=6)$$
    hence
    $$\dfrac{\lambda }{3}=\dfrac{1}{4}$$
    $$\lambda =\dfrac{3}{4}$$
  • Question 5
    1 / -0
    The equation of the circle touches y axis and having radius $$2$$ units and centre is $$(-2, -3)$$?
    Solution

  • Question 6
    1 / -0
    The foci of the ellipse $$\dfrac{x^{2}}{16} + \dfrac{y^{2}}{b^{2}} =1$$ and the hyperbola $$\dfrac{x^{2}}{144} - \dfrac{y^{2}}{81} =\dfrac{1}{25}$$ coincide, then the value of $$b^{2}$$ is:
    Solution
    The foci of the ellipse are also the foci of an hyperbola,
    then we have, for the ellipse,
    $$a^2 -c^2 = b^2$$
    so
    $$16 -c^2 = b^2...............(1) $$
     
    Equation of Hyperbola can also be written as $$\dfrac{x^2}{\dfrac{144}{25}}-\dfrac{y^2}{\dfrac{81}{25}}=1$$

    For the hyperbola, which must have its transverse axis on the x-axis, the equation
    $$c^2 - a^2 = b^2\Rightarrow c^2-\dfrac{144}{25}=\dfrac{81}{25}\Rightarrow c^2=\dfrac{225}{25}=9$$

    Putting this value in equation (1)
    $$16-9=b^2\Rightarrow b^2=7$$
  • Question 7
    1 / -0
    The radius of the circle $$x^2+y^2-5x+2y+5=0$$ is
    Solution
    Given the equation of the circle is $$x^2+y^2-5x+2y+5=0$$ can be written as
    or $$x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}+y^2+2.y.1+1+5-1-\dfrac{25}{4}=0$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2+4-\dfrac{25}{4}=0$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2=\dfrac{9}{4}$$
    or $$\left(x+\dfrac{5}{2}\right)^2+(y+1)^2=\left(\dfrac{3}{2}\right)^2$$.
    From this equation it is clear that the centre of the circle is $$\left(-\dfrac{5}{2},-1\right)$$ and radius is $$\dfrac{3}{2}$$.
  • Question 8
    1 / -0
    Cantres of the three circles
    $$x^{2}+y^{2}-4x-6y-14=0$$
    $$x^{2}+y^{2}+2x+4y-5=0$$
    and $$x^{2}+y^{2}-10x-16y+7=0$$
    Solution
    Centre of $$x^2+y^2-4x-6y-14=0\space  is\space (-2,-3)$$
    Centre of $$x^2+y^2+2x+4y-5=0\space  is\space (1,2)$$
    Centre of $$x^2+y^2-10x-16y+7=0\space  is\space (-5,-8)$$

    Let these centres be $$A(-2,-3);B(1,2);C=(-5,-8)$$

    Now we find the lengths of $$AB, BC, CA$$

    $$\Rightarrow AB=\sqrt{(-2-1)^2+(-3-2)^2}=\sqrt {34}$$

    $$\Rightarrow BC=\sqrt{(-5-1)^2+(-8-2)^2}=\sqrt {136}$$

    $$\Rightarrow CA=\sqrt{(-2+5)^2+(-3+8)^2}=\sqrt {34}$$

    Here we can see that $$AB+CA=BC$$

    Therefore $$ ABC $$ is a straight line.
  • Question 9
    1 / -0
    Coordinates of centre and radius of the circle $$(x-3)^2+(y+4)^2=25$$ are respectively
    Solution
    $$(x-3)^{2}+(y+4)^{2}=25$$
    $$(x-3)^{2}+(y-(-4))^{2}-(5)^{2}$$
    $$(x-4)^{2}+(y-k)^{2}-(r)^{2}$$
    $$r=5 \,\,(h,k)= (3,-4)$$
  • Question 10
    1 / -0
    The parabola $$y = px^{2} + px + q$$ is symmetrical about the line
    Solution
    The vertex of the parabola $$y = ax^2 + bx + c$$  is $$\left(\dfrac{-b}{2a}, \dfrac{-D}{4a}\right)$$  where $$D = b^2 - 4ac$$

    The vertex of the parabola $$y = px^2 + px + q$$  is $$\left(\dfrac{-p}{2p}, \dfrac{4pq - p^2}{4p}\right) = \left(\dfrac{-1}{2}, \dfrac{4q - p}{4}\right)$$

    i.e., The parabola $$y = px^2 + px + q$$  is symmetrical about the line  $$x = \dfrac{-1}{2}$$  or $$2x + 1 =0$$

    Optoin D is correct.

      
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now