Self Studies

Conic Sections Test - 33

Result Self Studies

Conic Sections Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The eccentricity of the hyperbola whose latus-return is $$8$$ and length of the conjugate axis is equal to half the distance between the foci, is
    Solution
    Given that the length of the latus rectum is $$8$$ and length of the conjugate axis is equal to half the distance between the foci.

    $$\Rightarrow \dfrac{2b^2}{a}=8$$ and $$2b=\dfrac{1}{2}(2ae)$$

    $$\therefore \dfrac{2}{a}\left(\dfrac{ae}{2}\right)^2=8$$

    $$\Rightarrow ae^2=16$$ ...(1)

    We have $$\dfrac{2b^2}{a}=8$$

    $$\Rightarrow b^2=4a$$

    $$\Rightarrow a^2(e^2-1)=4a$$

    $$\Rightarrow ae^2-a=4$$

    $$\Rightarrow 16-a=4$$ (by (1))

    $$\Rightarrow a=12$$

    Substitute $$a=12$$ in (1)

    $$\Rightarrow 12e^2=16$$

    $$\Rightarrow e^2=\dfrac{4}{3}$$

    $$\therefore e=\dfrac{2}{\sqrt{3}}$$
  • Question 2
    1 / -0
    The graph of curve 
    $${x^2} + {y^2} - 8x - 8y + 32 = 0$$ falls wholly in the
    Solution
    $${x}^{2}+{y}^{2}−2xy−8x−8y+32=0$$
    $$\Rightarrow\,{x}^{2}+{y}^{2}−2xy=8x+8y-32$$
    $$\Rightarrow {\left(x-y\right)}^{2}= 8\left(x + y - 4\right)$$
    is a parabola whose axis is $$x - y = 0$$ and the tangent at the vertex is $$x + y - 4 = 0$$
    Also, when $$y = 0$$, we have
    $$x^2 - 8x + 32 = 0$$ which gives no real values of $$x$$
    when$$ x = 0$$, we have $$y^2 - 8y + 32 = 0$$  which gives no real values of $$y$$.
    So, the parabola does not intersect the axes. Hence, the graph falls in the first quadrant.
  • Question 3
    1 / -0
    If foci are points $$(0,1)(0,-1)$$ and minor axis is of length $$1$$, then equation of ellipse is
    Solution
    Given that focii are $$(0,1), (0,-1)$$

    Axis lies along $$y-axis$$

    Distance between focii$$\rightarrow 2be=2$$

    $$\Rightarrow be=1$$

    Given that $$2a=1$$

    $$\Rightarrow a=\dfrac{1}{2}$$

    We know that $$\Rightarrow e^2=1-\dfrac{a^2}{b^2}$$

    $$\Rightarrow b^2e^2=b^2-a^2$$

    Substituting above obtained values in this expression we get,

    $$\Rightarrow 1=b^2-(\dfrac{1}{2})^2$$

    $$\Rightarrow 1=b^2-\dfrac{1}{4}$$

    $$\Rightarrow b^2=\dfrac{5}{4}$$

    Thus equation of ellipse$$\Rightarrow \dfrac{x^2}{\dfrac{1}{4}}+\dfrac{y^2}{\dfrac{5}{4}}=1$$

  • Question 4
    1 / -0
    If a be the radius of a circle which touches x-axis at the origin, then its equation is

    Solution
    The equation of the circle  with centre at $$\left(h,k\right)$$ and radius equal to $$a$$ is $${\left(x-h\right)}^{2}+{\left(y-k\right)}^{2}={a}^{2}$$
    When the circle passes through the origin  and centre lies on $$x-$$ axis 
    $$\Rightarrow h=a$$ and $$k=0$$
    Then the equation $${\left(x-h\right)}^{2}+{\left(y-k\right)}^{2}={a}^{2}$$ becomes $${\left(x-a\right)}^{2}+{y}^{2}={a}^{2}$$
    If a circle passes through the origin and centre lies on $$x-$$axis then the abscissa will be equal to the radius of the circle and the $$y-$$co-ordinate of the centre will be zero Hence, the equation of the circle will be of the form 
    $${\left(x\pm a\right)}^{2}+{y}^{2}={a}^{2}$$
    $$\Rightarrow {x}^{2}+{a}^{2}\pm 2ax+{y}^{2}={a}^{2}={x}^{2}+{y}^{2}\pm 2ax=0$$ is the required equation of the circle.

  • Question 5
    1 / -0
    The centre of the circle $$(x-a)(x-b)+(y-c)(y-c)=0$$ is 
    Solution
    Given the equation of the circle is 
    $$(x-a)(x-b)+(y-c)(y-c)=0$$ 
    or, $$x^2-x(a+b)+ab+y^2-x(c+c)+cd=0$$
    or, $$x^2-2.x.\dfrac{a+b}{2}+\dfrac{(a+b)^2}{4}+y^2-2.y.\dfrac{c+d}{2}+\dfrac{(c+d)^2}{4}=\dfrac{(a+b)^2}{4}-ab+\dfrac{(c+d)^2}{4}-cd$$
    or, $$\left(x-\dfrac{a+b}{2}\right)^2+\left(y-\dfrac{c+d}{2}\right)^2=\dfrac{(a-b)^2}{4}+\dfrac{(c-d)^2}{4}$$.
    From this equation it is clear that the centre is $$\left(\dfrac{a+b}{2},\dfrac{c+d}{2}\right)$$.
  • Question 6
    1 / -0
    If the vertex $$= (2, 0)$$ and the extremities of the latus rectum are $$(3, 2)$$ and $$(3, -2)$$, then the equation of the parabola is 
    Solution
    $$y^2=4ax$$

    $$(y-0)^2=4a(x-2)$$

    $$y^2=4a(x-2)$$

    $$y^2=4(x-2)$$

    $$y^2=4x-8$$
  • Question 7
    1 / -0
    Equation of the circle with centre on the $$y-$$axis and passing through the origin and the point $$(2,3)$$ is
    Solution
    We have to find equation of a circle with center on the y-axis.
    General equation of such circle is
    $$(x-0)^{2}+(y-k)^{2}=k^{2}$$
    It passes through $$(2,3)$$
    i.e, $$2^{2}+(3-k)^{2}=k^{2}$$
    $$\Rightarrow 4+9+k^{2}-6k=k^{2}$$
    $$\Rightarrow k=\dfrac{13}{6}$$
    $$\therefore $$ Equation of circle $$=x^{2}+\left(y-\dfrac{13}{6}\right)^{2}=\left(\dfrac{13}{6}\right)^{2}$$
    $$=6x^{2}+6y^{2}-13y=0$$
  • Question 8
    1 / -0
    The ellipse $$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$$ cuts x axis at A and y axis at B and the line joining the focus S and B makes an angle $$\dfrac{{3\pi }}{4}$$ with x-axis. Then the eccentricity of the ellipse is 
    Solution
    REF.Image
    B is (0,b) S is (ae,0)
    $$\dfrac{-b}{ae}=tan\dfrac{3\pi }{4}$$
    $$e=\dfrac{b}{a}$$
    $$\dfrac{b}{a}=\sqrt{1-\dfrac{b^{2}}{a^{2}}}$$  $$\dfrac{b}{a}=\dfrac{1}{\sqrt{2}}$$
    $$e=\dfrac{1}{\sqrt{2}}$$
    A is correct

  • Question 9
    1 / -0
    If $$(4,3)$$ and $$(-12,-1)$$ are end points of a diameter of a circle, then the equation of the circle is-
    Solution
    End points of diameter are $$(4,3)$$ and $$(-12,-1)$$
    $$\therefore $$ Center of circle$$=\left( \cfrac { 4-12 }{ 2 } ,\cfrac { 3-1 }{ 2 }  \right) $$
    $$=(-4,1)$$
    Radius$$=\cfrac { 1 }{ 2 } \sqrt { { \left( 4+12 \right)  }^{ 2 }+{ \left( 3+1 \right)  }^{ 2 } } $$
    $$=\sqrt { 68 } $$
    $$\therefore $$ Equation of circle is $${ \left( x+4 \right)  }^{ 2 }+{ \left( y-1 \right)  }^{ 2 }={ \left( \sqrt { 68 }  \right)  }^{ 2 }$$
    $${ x }^{ 2 }+8x+16+{ y }^{ 2 }-2y+1=68$$
    $${ x }^{ 2 }+{ y }^{ 2 }+8x-2y-51=0$$
  • Question 10
    1 / -0
    Axis of a parabola is $$y=x$$ and vertex and focus are at a distance $$\sqrt{2}$$ and $$2\sqrt{2}$$ respectively from the origin. The equation of the parabola is 
    Solution
    Given that 
    Axis of parabola is $$x=y$$

    $$\Rightarrow $$Vertex is at distance $$\sqrt 2$$ from origin and lies on the axis 

    Therefore, $$\Rightarrow vertex=(1,1)$$

    $$\Rightarrow $$ Focus is at a distance $$2\sqrt 2$$ from origin and lies on the axis.

    Therefore, $$\Rightarrow vertex=(2,2)$$

    So, we can say that equation of $$Directrix\rightarrow x+y=0$$

    Hence equation of parabola is

    $$\Rightarrow (x-2)^2+(y-2)^2=(\dfrac{x+y}{\sqrt 2})^2$$

    $$\Rightarrow x^2-4x+4+y^2-4y+4=\dfrac{x^2+y^2+2xy}{2}$$

    $$\Rightarrow 2x^2-8x+8+2y^2-8y+8=x^2+y^2+2xy$$

    $$\Rightarrow x^2+y^2-2xy=8x+8y-16$$

    $$\Rightarrow (x-y)^2=8(x+y-2)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now