Option$$a)$$
$$x=3\cos{t}\Rightarrow \cos{t}=\dfrac{x}{3}$$
$$y=4\sin{t}\Rightarrow\sin{t}=\dfrac{y}{4}$$
We know the identity, $${\sin}^{2}{t}+{\cos}^{2}{t}=1$$
$$\Rightarrow {\left(\dfrac{y}{4}\right)}^{2}+{\left(\dfrac{x}{3}\right)}^{2}=1$$
$$\Rightarrow \dfrac{{y}^{2}}{16}+\dfrac{{x}^{2}}{9}=1$$
$$\Rightarrow \dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{16}=1$$ represents an equation of ellipse.
Option$$b)$$
$${x}^{2}-2=-2\cos{t}$$
$$\Rightarrow {x}^{2}=2-2\cos{t}$$
$$\Rightarrow {x}^{2}=2\left(1-\cos{t}\right)$$
$$\Rightarrow {x}^{2}=2\left(1-\left(1-2{\sin}^{2}{\dfrac{t}{2}}\right)\right)$$
$$\Rightarrow {x}^{2}=4{\sin}^{2}{\dfrac{t}{2}}$$
We have $$y=4{\cos}^{2}{\dfrac{t}{2}}$$
$$\Rightarrow {\cos}^{2}{\dfrac{t}{2}}=\dfrac{y}{4}$$
We know the identity, $${\sin}^{2}{\dfrac{t}{2}}+{\cos}^{2}{\dfrac{t}{2}}=1$$
$$\Rightarrow \dfrac{{x}^{2}}{4}+\dfrac{y}{4}=1$$
$$\Rightarrow {x}^{2}=4-y$$ represents a parabolic profile.
Option$$c)$$
$$\sqrt{x}=\tan{t}, \sqrt{y}=\sec{t}$$
We know that $${\sec}^{2}{t}-{\tan}^{2}{t}=1$$
$$\Rightarrow{\left(\sqrt{y}\right)}^{2}-{\left(\sqrt{x}\right)}^{2}=1$$
$$\Rightarrow y-x=1$$ or $$x-y+1=0$$ is the equation of a straight line.
Option$$d)$$
$$x=\sqrt{1-\sin{t}}=\sqrt{{\sin}^{2}{t}+{\cos}^{2}{t}-\sin{t}}$$ using the identity $${\sin}^{2}{t}+{\cos}^{2}{t}=1$$
$$=\sqrt{{\sin}^{2}{t}+{\cos}^{2}{t}-2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}}$$ using multiple angle formula $$\sin{t}=2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}$$
$$=\sqrt{{\left(\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}\right)}^{2}}$$
$$=\left|\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}\right|$$
$$\therefore x=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}$$ and $$x=\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}$$
We have $$y=\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}$$
$$\Rightarrow x+y=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}=2\sin{\dfrac{t}{2}}$$
$$\Rightarrow \sin{\dfrac{t}{2}}=\dfrac{y+x}{2}$$
$$\Rightarrow x-y=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}-\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}=-2\cos{\dfrac{t}{2}}$$
$$\Rightarrow \cos{\dfrac{t}{2}}=\dfrac{y-x}{2}$$
We have the identity
$${\sin}^{2}{\dfrac{t}{2}}+{\cos}^{2}{\dfrac{t}{2}}=1$$
$$\Rightarrow {\left(\dfrac{y+x}{2}\right)}^{2}+{\left(\dfrac{y-x}{2}\right)}^{2}=1$$
$$\Rightarrow {x}^{2}+{y}^{2}+2xy+{x}^{2}+{y}^{2}-2xy=4$$
$$\Rightarrow {x}^{2}+{y}^{2}=2$$ is the equation of the circle.