Self Studies

Conic Sections Test - 37

Result Self Studies

Conic Sections Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the area enclosed by $$|x|+|y|=1$$ ?
    Solution
    $$|x|+ |y|=1 \Rightarrow \begin{cases} x+y=1 & x \ge 0 , y \ge 0 \\ -x+y=1 & x < 0, y \ge 0 \\ -x-y=1 & x < 0 , y < 0 \\ x-y=1  & x \ge 0 , y < 0 \end{cases}$$
    Plotting on graph 
    Area enclosed $$=1 (1) =1 unit^{2}$$

  • Question 2
    1 / -0
    Equation of the circle which passes through the centre of the circle $$x^{2} + y^{2} + 8x + 10y - 7 = 0$$ and is concentric with the circle $$2x^{2} + 2y^{2} - 8x - 12y - 9 = 10$$ is
    Solution
    First equation $$=x^2+y^2+8x+10y-7=0$$

    its centre $$=(-4, -5)$$

    Second equation of the circle

    $$=2x^2+2y^2+8x-12y-9=0$$

    its, centre $$=(2, 3)$$

    radius:$$=r^2\sqrt {(2+4)^2+(3+5)^2}$$

    $$r^2=\sqrt {6^2+8^2}=\sqrt {36+64}$$

    $$r^2 =100$$

    $$r=10$$

    The equation of the concentric 

    circle $$=(x-2)^2+(y-3)^2=10^2$$

    $$x^2-4x+4+y^2-6y+9-100=0$$

    $$x^2-4x+y^2-6y+13-100=0$$

    $$x^2+y^2-4x-6y-87=0$$
  • Question 3
    1 / -0
    The centres of a set of circles, each of radius $$3$$, lie on the circle $${x}^{2}+{y}^{2}=25$$. The lotus of any point in the set is 
    Solution

  • Question 4
    1 / -0
     The curve described parametrically by$$x = {t^2} + t + 1$$ and $$y = {t^2} - t + 1$$ represents 
    Solution
    The equations $$x=t^2+t+1$$ and $$y=t^2-t+1$$
    Subtracting $$y$$ from $$x,$$ we get
    $$x-y=2t$$
    $$\Rightarrow$$  $$t=\dfrac{x-y}{2}$$                  ----- ( 1 )
    Now, adding $$x$$ and $$y$$ we get,
    $$\Rightarrow$$  $$x+y=2t^2+2$$                    ----- ( 2 )
    Substituting the value of $$t$$ from equation ( 1 ) in equation ( 2 ), we get
    $$x+y=2\left(\dfrac{x-y}{2}\right)^2+2$$

    $$\Rightarrow$$  $$x+y=2\times\dfrac{x^2+y^2-2xy}{4}+2$$

    $$\Rightarrow$$  $$x+y=\dfrac{x^2+y^2-2xy}{2}+2$$

    $$\Rightarrow$$  $$2x+2y=x^2+y^2-2xy+4$$

    $$\Rightarrow$$  $$x^2+y^2-2xy+4-2x-2y=0$$         ----- ( 3 )
    The general second degree equation is of the form
    $$ax^2+2hxy+by^2+2gx+2fy+c=0$$                     ----- ( 4 )
    Comparing equations ( 3 ) and ( 4 ), we have
    $$a=1,h=-1,b=1,g=-1,f=-1$$ and $$c=4$$
    This equation represents parabola if $$h^2-ab=0$$
    $$h^2-ab=(-1)^2-(1)(1)=1-1=0$$
    $$\therefore$$   The equation ( 3 ) represents a parabola.

  • Question 5
    1 / -0
    If $$2x - 3y = 5$$ and $$3x - 4y = 7$$ are the equation of $$2$$ diameters of a circle whose area is $$88$$ sq. units then the equation of the circle is :
    Solution

  • Question 6
    1 / -0
    If he equations of two diameters of a circle are $$2x + y = 6$$ and $$3x + 2y = 4$$ and the radius is $$10$$ , find the equation of the circle. 
    Solution
    Equation of two diameters of circle are
    $$2x+y=6 ....... (i)$$
    $$3x+2y=4 ...... (ii)$$

    We know intersection of these line will give centre of circle

    $$4x+2y=12$$         
    $$3x+2y=4$$
    $$(-)$$   $$(-)$$
    $$\overline {2x+0=16}$$

    $$\Rightarrow x=8$$

    Put $$x=8$$ in $$(i)$$ we get $$16+y=6$$
    $$y=-10$$

    centre of circle is $$(8, -10)$$ and radius $$10$$ equation of circle will be
     
    $$(x-8)^{2}+(y+10)^{2}=(10)^{2}$$

    $$x^{2}-16x+64+y^{2}+20y+100=100$$

    $$x^{2}+y^{2}-16x+20y+64=0$$
  • Question 7
    1 / -0
    The equation $$\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$$ represents an ellipse if
    Solution

  • Question 8
    1 / -0
    The equation of directrix of a parabola $$3 x + 4 y + 15 = 0$$ and equation of tangent at vertex is $$3 x + 4 y - 5 = 0$$ . Then the length of latus rectum is equal to- 
    Solution

  • Question 9
    1 / -0
    Which of the following equations represents parametrically, parabolic profile ?
    Solution
    Option$$a)$$
    $$x=3\cos{t}\Rightarrow \cos{t}=\dfrac{x}{3}$$

    $$y=4\sin{t}\Rightarrow\sin{t}=\dfrac{y}{4}$$

    We know the identity, $${\sin}^{2}{t}+{\cos}^{2}{t}=1$$

    $$\Rightarrow {\left(\dfrac{y}{4}\right)}^{2}+{\left(\dfrac{x}{3}\right)}^{2}=1$$

    $$\Rightarrow \dfrac{{y}^{2}}{16}+\dfrac{{x}^{2}}{9}=1$$

    $$\Rightarrow \dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{16}=1$$ represents an equation of ellipse.

    Option$$b)$$

    $${x}^{2}-2=-2\cos{t}$$

    $$\Rightarrow {x}^{2}=2-2\cos{t}$$

    $$\Rightarrow {x}^{2}=2\left(1-\cos{t}\right)$$

    $$\Rightarrow {x}^{2}=2\left(1-\left(1-2{\sin}^{2}{\dfrac{t}{2}}\right)\right)$$

    $$\Rightarrow {x}^{2}=4{\sin}^{2}{\dfrac{t}{2}}$$

    We have $$y=4{\cos}^{2}{\dfrac{t}{2}}$$

    $$\Rightarrow {\cos}^{2}{\dfrac{t}{2}}=\dfrac{y}{4}$$

    We know the identity, $${\sin}^{2}{\dfrac{t}{2}}+{\cos}^{2}{\dfrac{t}{2}}=1$$

    $$\Rightarrow \dfrac{{x}^{2}}{4}+\dfrac{y}{4}=1$$

    $$\Rightarrow {x}^{2}=4-y$$ represents a parabolic profile.

    Option$$c)$$
    $$\sqrt{x}=\tan{t}, \sqrt{y}=\sec{t}$$

    We know that $${\sec}^{2}{t}-{\tan}^{2}{t}=1$$

    $$\Rightarrow{\left(\sqrt{y}\right)}^{2}-{\left(\sqrt{x}\right)}^{2}=1$$

    $$\Rightarrow y-x=1$$ or $$x-y+1=0$$ is the equation of a straight line.

    Option$$d)$$

    $$x=\sqrt{1-\sin{t}}=\sqrt{{\sin}^{2}{t}+{\cos}^{2}{t}-\sin{t}}$$ using the identity $${\sin}^{2}{t}+{\cos}^{2}{t}=1$$

    $$=\sqrt{{\sin}^{2}{t}+{\cos}^{2}{t}-2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}}$$ using multiple angle formula $$\sin{t}=2\sin{\dfrac{t}{2}}\cos{\dfrac{t}{2}}$$

    $$=\sqrt{{\left(\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}\right)}^{2}}$$

    $$=\left|\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}\right|$$

    $$\therefore x=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}$$ and $$x=\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}$$

    We have $$y=\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}$$

    $$\Rightarrow x+y=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}+\sin{\dfrac{t}{2}}+\cos{\dfrac{t}{2}}=2\sin{\dfrac{t}{2}}$$

    $$\Rightarrow \sin{\dfrac{t}{2}}=\dfrac{y+x}{2}$$

    $$\Rightarrow x-y=\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}-\sin{\dfrac{t}{2}}-\cos{\dfrac{t}{2}}=-2\cos{\dfrac{t}{2}}$$

    $$\Rightarrow \cos{\dfrac{t}{2}}=\dfrac{y-x}{2}$$

    We have the identity

    $${\sin}^{2}{\dfrac{t}{2}}+{\cos}^{2}{\dfrac{t}{2}}=1$$

    $$\Rightarrow {\left(\dfrac{y+x}{2}\right)}^{2}+{\left(\dfrac{y-x}{2}\right)}^{2}=1$$

    $$\Rightarrow {x}^{2}+{y}^{2}+2xy+{x}^{2}+{y}^{2}-2xy=4$$

    $$\Rightarrow {x}^{2}+{y}^{2}=2$$ is the equation of the circle.
  • Question 10
    1 / -0
    Equation of the circle of radius 5 whose centre lies on y-axis in first quadrant and passes through$$\left( {3,\,\,\,\,2} \right)$$ is 
    Solution
    Let the coordinate of the center be $$(0,k)$$ as center lies on y-axis

    hence, the Equation of circle should be 
    $$(x-0)^2+(y-k)^2=5^2\Rightarrow x^2+y^2+k^2-2ky=25$$

    and it passes through the point (3,2)
    $$3^2+2^2+k^2-2k\cdot 2=25\Rightarrow k^2-4k-12=0\Rightarrow k=-2,6$$

    But $$k=6$$ as the center is in the first quadrant

    Putting this value in $$x^2+y^2+k^2-2ky=25$$, we get

    $$x^2+y^2+36-12y=25\Rightarrow x^2+y^2-12y+11=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now