Self Studies

Conic Sections Test - 38

Result Self Studies

Conic Sections Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A circle is concentric with circle $$x^{2}+ y^{2}-2x+4y-20=0$$. If perimeter of the semicircle is $$36$$ then the equation of the circle is :
    Solution
    $$x^2+y^2-2x+4y-20=0$$
    center $$(1, -2)$$
    perimeter $$\Rightarrow 36=(\pi r+2r)$$
                      $$36=r(3.14+2)=$$
    $$((x-1)+y+2)^2=\left(\dfrac{126}{11}\right)^2$$ or $$(7)^2$$   $$r=\dfrac{36}{5.14}=7$$
  • Question 2
    1 / -0
    The axes are translated so that the new equation of the circle $$x^{2}+y^{2}-5x+2y-5=0$$ has no first degree terms. Then the new equation is
    Solution
    $$x^2+y^2-5x+2y-5=0$$
    $$\sqrt {\dfrac {25}{4}+1+25}$$
    $$=\sqrt {\dfrac {49}{4}}$$
    $$ (5/2, -1)$$
    $$x^2+y^2=\left (\sqrt {\dfrac {49}{4}}\right)^2$$
    $$x^2+y^2=\dfrac {49}{4}$$
  • Question 3
    1 / -0
    vertices of an ellipse are $$(0,\pm 10)$$ and its eccentricity $$e=4/5$$ then its equation is 
    Solution
    Let the equation of the required ellipse be 
    $$\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1\longrightarrow \left( 1 \right) $$
    since the vertices of the ellipse are on $$y$$-axis, so the coordinate of the vertices are $$\left( 0,\pm b \right) $$
    $$\therefore b=10\\ Now,\quad { a }^{ 2 }=b^{ 2 }\left( 1-{ e }^{ 2 } \right) \\ \Rightarrow { a }^{ 2 }=100\left( 1-\dfrac { 16 }{ 25 }  \right) \\ \Rightarrow { a }^{ 2 }=36\\ $$
    substituting the value of $${ a }^{ 2 }$$ and $${ b }^{ 2 }$$ in equation $$(1)$$
    we get, $$\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0$$
  • Question 4
    1 / -0
    The name of the conic represent by the equation $$x^2+y^2-2y+20x+10=0$$ is
    Solution
    For a standard second degree equation $$ax^2+2hxy+by^2+2gx+2fy+c=0$$
    to be a circle $$a=b\\h=0$$
    Here $$a=b=1\\h=0$$
    So The given equation is Circle
  • Question 5
    1 / -0
    The equation of the circle passing through the foci of the ellipes  $${\frac{x}{{16}}^2} + {\frac{y}{{{9^{}}}}^2} = 1$$ and having centre at $$\left( {0,3} \right)$$ is 

    Solution
    R.E.F image 
    Equation of ellipse : $$ \frac{x^{2}}{16}+\frac{y^{2}}{9} = 1 $$
    coordinate of foci are $$ (ac,o); (-ac,o) $$
    $$ e = \sqrt{1-\frac{9}{16}} = \frac{\sqrt{7}}{4} $$
    $$ a = 4 $$
    co-ordinate of foci $$ = (\sqrt{7},0),(-\sqrt{7},0) $$
    $$ R = \sqrt{7+9} = 4 $$
    $$ (x-0)^{2}+(y-3)^{2} = 4^{2} $$
    $$ x^{2}+y^{2}-6y+9 = 16 $$
    $$ x^{2}+y^{2}-6y-7 = 0 $$ 

  • Question 6
    1 / -0
    The equation of ellipse whose major axis is along the direction of x-axis, eccentricity is $$e=2/3$$
    Solution
    $$\begin{array}{l} e=\frac { 2 }{ 3 } =\sqrt { \frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ c }  }  \\ \Rightarrow { \left( { \frac { 2 }{ 3 }  } \right) ^{ 2 } }=\frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ { { a^{ 2 } } } }  \\ \Rightarrow \frac { { 4{ a^{ 2 } } } }{ a } ={ a^{ 2 } }-{ b^{ 2 } } \\ \Rightarrow { b^{ 2 } }={ a^{ 2 } }-4{ a^{ 2 } }=\frac { { 5{ a^{ 2 } } } }{ 9 } \to \left( i \right)  \end{array}$$
    Equation of Ellipse are
    $$\begin{array}{l} \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { { y^{ 2 } } } }{ { { b^{ 2 } } } } =1 \\ \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { 9{ y^{ 2 } } } }{ { 5{ a^{ 2 } } } } =1\to \left( { ii } \right)  \\ Put\, \, { a^{ 2 } }=\frac { { 405 } }{ { 20 } } \, \, \left( { From\, \, option\, \, in\, \, equation\left( i \right)  } \right)  \\ Then,\, \, { b^{ 2 } }=\frac { { 405 } }{ { 360 } }  \end{array}$$
    Hence, equation of ellipse is
    $$ \Rightarrow \frac{{{x^2}}}{{\left( {\frac{{405}}{{20}}} \right)}} + \frac{{{y^2}}}{{\left( {\frac{{405}}{{36}}} \right)}} =  - 1,20{x^2} + 36{y^2} = 405$$
  • Question 7
    1 / -0
    The equation $$\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1$$ represents an ellipse if
    Solution
    $$\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1$$
    For this equation to represent an ellipse its eccentricity shoule lie between $$0$$ and $$1$$.
    $$\sqrt{1-\dfrac{b^2}{a^2}}< 1$$
    $$0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1$$
    $$0 < (10-a)^2-(4-a)^2 <1$$
    $$0< 84-12a <1$$
    $$0< (7-a)12<1$$
    $$12(7-a)> 0$$ and
    $$12(7-a)<1$$
    $$a< 7$$ and $$7-a<\dfrac{1}{12}$$
    $$a< 7$$ and $$a >\dfrac{83}{12}$$
  • Question 8
    1 / -0
    Consider the set of hydperbola $$xy=k,k\ \in\ R$$. Let $$e_{1}$$ be the eccentricity when $$k=4$$ and $$e_{2}$$ be the eccentricity when $$k=9$$ . Then $$e^{2}_{1}+e^{2}_{2}=$$
    Solution

  • Question 9
    1 / -0
    If a circle with centre $$(0,0)$$ touches the line $$5x+12y=1$$ then it equation will be
    Solution

  • Question 10
    1 / -0
    If there is exactly one tangent at a distance of $$4$$ units from one of the locus of $$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{a^{2}-16}=1, a>4$$, then length of latus rectum is :-
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now