Self Studies

Conic Sections Test - 43

Result Self Studies

Conic Sections Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle passing through the points of intersection of the lines $$2x+y=0,\ x+y+3=0$$ and $$x-2y=0$$ is
    Solution

  • Question 2
    1 / -0
    Length of the latus rectum of the parabola $$25 [(x- 2)^{2}+(y-3)^{2}]=(3x-4y+7)^2 $$ is :
    Solution
    $$The\, given\, equation\, is\,  \\ 25\left[ { { { \left( { x-2 } \right)  }^{ 2 } }+{ { \left( { y-3 } \right)  }^{ 2 } } } \right] ={ \left( { 3x-4y+7 } \right) ^{ 2 } } \\ Here, \\ focus\, of\, parabola\, \left( { 2,3 } \right)  \\ Directrix \\ 3x-4y+7 $$

    $$\\ Now,\, we\, know\, distan  ce\, between\, directrix\, and\, \, focus\, is\, \, half\, of\, latus\, rectum. \\ so,\, distan  ce\, between\, them\Rightarrow L=\left| { \dfrac { { 3\times 2-4\times 3+7 } }{ { \sqrt { { 3^{ 2 } }+{ 4^{ 2 } } }  } }  } \right|  \\ L=\left| { \dfrac { { 6-12+7 } }{ { \sqrt { 25 }  } }  } \right|  \\ \therefore L=\left| { \dfrac { 1 }{ 5 }  } \right|  \\ Then\, latus\, rectum=2L \\ =2\times \dfrac { 1 }{ 5 }  \\ =\dfrac { 2 }{ 5 }  $$

    $$\\ Hence,\, the\, option\, D\, is\, the\, correct\, answer.$$
  • Question 3
    1 / -0
    The length of the latus rectum of the parabola $$x^{2}-4x-8y+12=0$$ is-
    Solution
    We have 
    $${x^2} - 4x - 8y + 12 = 0$$

    $$ \Rightarrow {\left( {x - 2} \right)^2} + 8 - 8y = 0\,\,\,\,\,\left( {by\,taking\,common\,x} \right)$$
    $$ \Rightarrow {\left( {x - 2} \right)^2} = 8\left( {y - 1} \right)$$

    Comparing with $$X^2=L.R\times Y$$

    So, Length of latus rectum $$=8$$
    Hence, the option $$(C)$$ is the correct answer.
  • Question 4
    1 / -0
    The equation of the circle of a radius $$5$$ in the first quadrant which touches the x-axis and the line $$3x-4y=0$$ is 
    Solution

    Hence, Option (D) is the correct answer.

  • Question 5
    1 / -0
    Equation of circle touching $$x=0, y=0$$ and $$x=4$$ is 
    Solution
    $$\textbf{Step -1: Finding the centre and radius from the given values.}$$
                     $$\text{We are given that}$$ $$(h,k)=(2,2),r=2$$
    $$\textbf{Step -2: Finding the equation of the circle}$$
                     $$\text{Equation of a circle whose centre is}$$ $$(h,k)$$ $$\text{and radius is}$$ $$r$$ $$\text{is}$$
                     $$\Rightarrow (x-h)^2+(y-k)^2=r^2$$
                     $$\Rightarrow (x-2)^2+(y-2)^2=2^2$$
                     $$\Rightarrow x^2-4x+4+y^2+4y+4=4$$
                     $$\Rightarrow x^2+y^2-4x-4y=-4$$
                     $$\text{Multiplying throughout by}$$ $$4,$$
                     $$\Rightarrow 4(x^2+y^2)-16x-16y+16=0$$ 
    $$\textbf{ Hence, correct option is A.}$$
  • Question 6
    1 / -0
    Find the equation of a circle whose center is (2,-1) and radius is 3 
    Solution
    Equation of circle with center $$(h,k)$$ and radius $$r$$ is written as
    $$(x-h)^2+(y-k)^2=r^2$$

    then,
    Equation of circle with center $$(2,-1)$$ and radius $$3$$ is written as
    $$\Rightarrow (x-2)^2+(y+1)^2=3^2$$
    $$\Rightarrow x^2+4-4x+y^2+1+2y=9$$
    $$\therefore x^2+y^2-4x+2y-4=0$$

  • Question 7
    1 / -0
    The vertex and focus of a parabola are $$(-2,2),(-6,6)$$. Then its length of latus rectum is
    Solution
    Distance between focus and vertex
    $$\begin{array}{l} focus\left( { -6,6 } \right) ,\, vertex\left( { -2,2 } \right)  \\ a=\sqrt { { { \left( { -6+2 } \right)  }^{ 2 } }{ { \left( { 6-2 } \right)  }^{ 2 } } }  \\ a=\sqrt { 16+16 } =4\sqrt { 2 }  \end{array}$$
    length latus vectum 
    $$\begin{array}{l} =4a=4\times 2\sqrt { 2 }  \\ =16\sqrt { 2 }  \end{array}$$
  • Question 8
    1 / -0
    The equation of the tangent to the curve y = 2sinx + sin2x at $$x=\frac { \pi  }{ 3 } $$ on it is 
    Solution
    $${ (x-2) }^{ 2 }+{ (y-3) }^{ 2 }=0\\ \Rightarrow { x }^{ 2 }+4-4x+{ y }^{ 2 }+9-6y=0\\ { x }^{ 2 }+{ y }^{ 2 }-4x+6y+13=0$$
    radius$$=\sqrt { { g }^{ 2 }+{ f }^{ 2 }-c } $$
    $$g=-2 \quad f=-3 \quad c=13$$
    $$r=\sqrt { { (-2) }^{ 2 }+{ (-3) }^{ 2 }-13 } =\sqrt { 13-13 } =0$$
    radius of the circle is zero .
    Hence diameter$$=0$$
    i.e., it is a point circle with centre at $$(2,3)$$.
  • Question 9
    1 / -0
    The order of the differential equation of the family of parabolas whose length of latus rectum is fixed and axis is the X-axis 
    Solution
    $$\begin{array}{l} Equation\, can\, be\, { \left( { y-k } \right) ^{ 2 } }=a\left( { x-h } \right) \, \, \, a=fixed \\ differentiating\, this\, we\, get \\ 2\left( { y-k } \right) .y'=ax \\ \left( { y-k } \right) .{ y^{ n } }+y{ '^{ 2 } }=\frac { a }{ 2 }  \\ \frac { { ax } }{ { 2y' } } .y''+y{ '^{ 2 } }=\frac { a }{ 2 }  \\ ax.{ y^{ n } }+2y{ '^{ 3 } }=ay' \\ \therefore order\, =2 \\ Hence,\, the\, option\, A\, is\, the\, correct\, answer. \end{array}$$
  • Question 10
    1 / -0
    $${ \cos }^{ 4 }\dfrac { \pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 3\pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 5\pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 7\pi  }{ 8 } =$$
    Solution
    $$\textbf{Step 1: Simplify the given expression.}$$

                    $$\text{Consider, } \cos^4\dfrac{\pi}{8} + \cos^4\dfrac{3\pi}{8} + \cos^4\dfrac{5\pi}{8} + \cos^4\dfrac{7\pi}{8}$$

                    $$= \cos^4\dfrac{\pi}{8} + \cos^4\left(\dfrac{\pi}{2}-\dfrac{\pi}{8}\right) + \cos^4 \left ( \dfrac{\pi}{2} + \dfrac{\pi}{8} \right ) + \cos^4 \left ( \pi - \dfrac{\pi}{8} \right )$$

                    $$= \cos^4\dfrac{\pi}{8} + \sin^4\dfrac{\pi}{8} + \left (-\sin\dfrac{\pi}{8} \right )^4 + \left ( -cos\dfrac{\pi}{8} \right )^4$$

                    $$= 2\left [ \cos^4\dfrac{\pi}{8} + \sin^4\dfrac{\pi}{8} \right]$$

    $$\textbf{Step 2: Use multiple angle formula to get final result. }$$

                   $$= 2 \left \{ \left ( \cos^2\dfrac{\pi}{8} + \sin^2\dfrac{\pi}{8} \right )^2 - 2\cos^2\dfrac{\pi}{8} \cdot \sin^2\dfrac{\pi}{8} \right \}$$

                   $$= 2 \left ( 1^2 - \dfrac{1}{2} \left ( 2\sin\dfrac{\pi}{8}\cos\dfrac{\pi}{8} \right )^2 \right )$$               
                  
                   $$= 2\left [ 1^2 - \dfrac{1}{2} \times \left ( \sin\dfrac{\pi}{4} \right )^2 \right ]$$                                      $$[\because \boldsymbol{\sin 2A=2\sin A\cos A}]$$

                   $$= 2\left ( 1^2 - \dfrac{1}{2} \times \left ( \dfrac{1}{\sqrt 2} \right )^2 \right )$$

                   $$= 2\left [1^2 - \dfrac{1}{4} \right ]=\dfrac{3}{2}$$

    $$\textbf{Hence, Option 'B' is correct.}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now