Self Studies

Conic Sections Test - 47

Result Self Studies

Conic Sections Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Vertex of the parabola $$9x^2 - 6x + 36y + 9 = 0$$ is
    Solution
    Given,

    $$9x^2-6x+36y+9=0$$

    $$(3x)^2-2(3x)=-36y-9$$

    $$(3x)^2-2(3x)+1=-36y-9+1$$

    $$(3x-1)^2=-36y-8$$

    $$(3x-1)^2=-36\left ( y+\dfrac{2}{9} \right )$$

    $$(x-a)^2=4c(y-b)$$

    $$\left ( x-\dfrac{1}{3} \right )^2=-4\left ( y+\dfrac{2}{9} \right )$$

    $$x-\dfrac{1}{3}=0$$

    $$\Rightarrow x=\dfrac{1}{3}$$

    $$y+\dfrac{2}{9} =0$$

    $$\Rightarrow y=-\dfrac{2}{9}$$

    $$\therefore \left ( \dfrac{1}{3}, -\dfrac{2}{9}\right )$$
  • Question 2
    1 / -0
    If two vertices of an equilateral triangle are $$A (-a, 0)$$ and $$B(a, 0), a > 0$$ and the third vertex C lies above x-axis then the equation of the circumcircle of $$\Delta ABC$$ is
    Solution

  • Question 3
    1 / -0
    The equation(s) of the circle(s) which pass through the ends of the common chords of two circles $$2x^{2}+2y^{2}+8x+4y-7=0$$ and $$x^{2}+y^{2}-8x-4y-5=0$$ and touch the line $$x=7$$ is (are) :
  • Question 4
    1 / -0
    The equation of the circle which touches the axes of $$y$$ at the origin and passing through $$(3,4)$$ is
    Solution

  • Question 5
    1 / -0
    The locus of center of a variable circle touching the circle of radius $${ r }_{ 1 }and{ r }_{ 2 }$$ extemally which also touch each other externally , is a conic of the eccentricity $$e$$.If $$\dfrac { { r }_{ 1 } }{ { r }_{ 2 } } =3+2\sqrt { 2 } $$ then $${ e }^{ 2 }$$ is 
    Solution

  • Question 6
    1 / -0
    The value of k, such that the equation 
    $$2x^{2}+2y^{2}-6x+8y+k=0$$ represent a point circle , is 
    Solution
    The given equation of circle is
    $$\Rightarrow$$ $$2x^2+2y^2-6x+8y+k=0$$
    $$\Rightarrow$$  $$x^2+y^2-3x+4y+\dfrac{k}{2}=0$$           [ Dividing both sides by $$2$$ ]
    Comparing it with general equation of circle $$x^2+y^2+2gx+2fy+c=0,$$ we get
    $$\Rightarrow$$  $$2g=-3,\,2f=4$$ and $$c=\dfrac{k}{2}$$
    $$\therefore$$  $$g=\dfrac{-3}{2}$$ and $$f=2$$
    Center $$=(-g,-f)=\left(\dfrac{3}{2},\,-2\right)$$
    We know,
    Radius $$(r)=\sqrt{g^2+f^2-c}$$
    We know that for point circle radius is $$0.$$ $$r=0$$
    $$\Rightarrow$$  $$0=\sqrt{\left(\dfrac{3}{2}\right)^2+(-2)^2-\dfrac{k}{2}}$$
    $$\Rightarrow$$  $$0=\sqrt{\dfrac{9}{4}+4-\dfrac{k}{2}}$$
    $$\Rightarrow$$  $$0=\dfrac{9}{4}+4-\dfrac{k}{2}$$
    $$\Rightarrow$$  $$\dfrac{k}{2}=\dfrac{9+16}{4}$$
    $$\Rightarrow$$  $$\dfrac{k}{2}=\dfrac{25}{4}$$
    $$\therefore$$  $$k=\dfrac{25}{2}$$

  • Question 7
    1 / -0
    If the radius of the circle $$x^{2}+y^{2}-18x-12y+k=0$$ be $$11$$ then k=
    Solution
    The equation of circle is $$x^2+y^2-18x-12y+k=0$$.
    Comparing it with $$x^2+y^2+2gx+2fy+c=0$$ we get,
    $$2g=-18,\,2f=-12$$ and $$c=k$$
    $$\therefore$$  $$g=-9,\,f=-6$$ and $$c=k$$
    Center $$=(-g,-f)=(9,6)$$
    Radius of a circle $$(r)=11$$             [ Given ]
    We know,
    $$\Rightarrow$$  $$r=\sqrt{g^2+f^2-c}$$
    $$\Rightarrow$$  $$11=\sqrt{(-9)^2+(-6)^2-k}$$
    $$\Rightarrow$$  $$11=\sqrt{81+36-k}$$
    $$\Rightarrow$$  $$11=\sqrt{117-k}$$
    $$\Rightarrow$$  $$121=117-k$$
    $$\Rightarrow$$  $$4=-k$$
    $$\therefore$$  $$k=-4$$
  • Question 8
    1 / -0
    The equation of a circle which is passing through the vertices of an equilateral triangle whose median is of length 3 a is
    Solution
    Median of the equilateral triangle is $$3a$$
    $$\Rightarrow=3a$$
    In $$\triangle ADB$$,we have
    $$\Rightarrow(AB)^2=(AD)^2+(BD)^2$$
    $$\Rightarrow(AB)^2=(3a)^2+\left(\dfrac{AB}{2}\right)^2$$
    $$\Rightarrow(AB)^2=9a^2+\dfrac{(AB)^2}{4}$$
    $$\Rightarrow\dfrac{3}{4}(AB)^2=9a^2$$
    $$\Rightarrow(AB)^2=12a^2$$
    Now, In $$\triangle OBD,$$
    $$\Rightarrow(OB)^2=(OD)^2+(BD)^2$$
    $$\Rightarrow r^2=(3a-r)^2+\left(\dfrac{AB}{2}\right)^2$$
    $$\Rightarrow r^2=9a^2+r^2-6ar+3a^2$$   $$[\because(AB)^2=10a^2]$$
    $$\Rightarrow6ar=12a^2$$
    $$\Rightarrow r=2a$$ 
    So, the equation of circle is
    $$\Rightarrow(x-0)^2+(y-0)^2=(2a^2)$$
    $$\Rightarrow x^2+y^2=4a^2$$

  • Question 9
    1 / -0
    Equation $$\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2}$$ = 4 represents _____________.
    Solution

  • Question 10
    1 / -0
    If $$\left| z-{ z }_{ 0 } \right| =\dfrac { \left| a\overline { z } +a\overline { z } +b \right|  }{ 2\left| a \right|  } $$ represent a parabola, Then the  length of latus  rectum of parabola 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now