Self Studies

Conic Sections Test - 50

Result Self Studies

Conic Sections Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The latus rectum of the parabola $$\displaystyle x = at^2 + bt + c, y = a't^2 + b't + c'$$ is
    Solution

  • Question 2
    1 / -0
    The centre of a circle is $$C(2,-5)$$ and the circle passes through the point $$A(3,2)$$. The equation of the circle is
    Solution
    radius of the circle is $$AC=\sqrt { { (3-2) }^{ 2 }+{ (2+5) }^{ 2 } } =\sqrt { 1+49 } =\sqrt { 50 } $$
    equation of the circle is 
    $${ (x-x_1) }^{ 2 }+{ (y-y_1) }^{ 2 }=r^2$$
    $${ (x-2) }^{ 2 }+{ (y+5) }^{ 2 }=50\\ \Rightarrow { x }^{ 2 }+{ y }^{ 2 }-4x+10y-21=0$$
  • Question 3
    1 / -0
    If the parabola $${y}^{2}=4ax$$ passes through the point $$P(3,2)$$, then the length of its latus rectum is
    Solution
    Since the point $$P(3,2)$$ lies on $${ y }^{ 2 }=4ax$$, we have
    $$4a\times 3={ 2 }^{ 2 }\Rightarrow a=\cfrac { 1 }{ 3 } $$
    Latus rectum $$=4a=4\times \cfrac { 1 }{ 3 } =\cfrac { 4 }{ 3 } $$
  • Question 4
    1 / -0
    The equation $$\displaystyle ax^2 + 4xy + y^2 + ax + 3y + 2 = 0$$ represents a parabola if a is
    Solution

  • Question 5
    1 / -0
    The foci of the ellipse $$25\left ( x + 1 \right )^2 + 9\left ( y + 2 \right )^2 = 225$$, are at
    Solution

  • Question 6
    1 / -0
    The latus rectum of the hyperbola $$9x^{2} - 16y^{2} - 18x - 32y - 151 = 0$$ is 
    Solution
    Hyperbola $$9x^{2} - 16y^{2} - 18x - 32y - 151 = 0$$ can be written as

     $$9(x^{2}-2x) - 16 (y^{2}+2y) = 151$$

    $$\Rightarrow  9(x-1)^{2} - 16(y+1)^{2} = 151 + 9 - 16 = 144$$

    $$\Rightarrow   \dfrac{(x-1)^{2}}{16} - \dfrac{(y+1)^{2}}{9} = 1$$

    or   $$\dfrac{X^{2}}{16} - \dfrac{Y^{2}}{9} = 1$$

    $$\left [ where X = x-1, Y= y+1 \right ]$$

    Here $$a^{2} = 16, b^{2} = 9$$

    Latus rectum $$= 2\dfrac{b^{2}}{a} = \dfrac{2(9)}{4} = \dfrac{9}{2}$$
  • Question 7
    1 / -0
    If the equation of the ellipse is $$3x^{2}+ 2 y^{2}+6x-8y+5=0, $$ then which of the following is/ are true?
    Solution
    $$3x^{2}+ 2y^{2}+ 6x- 8y+ 5=0$$
           $$\dfrac{(x+1)^{2}}{2}+ \dfrac{(y-2)^{2}}{3}=1 $$
    Therefore, center is (-1,2) and ellipse is vertical (b>a)
                   $$a^{2}=2, b^{2}=3$$
    Now                     $$2=3(1-e^{2})$$
                         $$e=\dfrac{1}{\sqrt{3}}$$
    Foci are(-1,2$$ \pm \, be)\, and \, (-1,2 \pm 1)= (-1,3)\, and\, (-1,1)$$ and directrix are $$y=2 \pm \dfrac{b}{e} \implies y=5\, and \, y=-1$$

  • Question 8
    1 / -0
    Consider the parabola whose focus is at (0,0) and tangent at vertex is $$ x-y+1=0 $$

    The length of latus rectum is
    Solution
    The distance between the focus and the tangent at the
    $$\text { vertex }=\dfrac{|0-0+1|}{\sqrt{1^{2}+1^{2}}}=\dfrac{1}{\sqrt{2}}$$
    The directrix is the line parallel to the tangent at vertex and at a distance $$ 2 \times \dfrac{1}{\sqrt{2}} $$ from the focus. 
    Let equation of directrix is
    $$x-y+\lambda=0$$
    $$\text { where } \quad \dfrac{\lambda}{\sqrt{1^{2}+1^{2}}}=\dfrac{2}{\sqrt{2}} $$
    $$\Rightarrow \quad \lambda=2$$
    Let $$ P(x, y) $$ be any moving point on the parabola, then
    $$O P =P M $$
    $$\Rightarrow  x^{2}+y^{2} =\left(\dfrac{x-y+2}{\sqrt{1^{2}+1^{2}}}\right)^{2}$$
    $$ \Rightarrow 2 x^{2}+2 y^{2}=(x-y+2)^{2}$$
    $$\Rightarrow x^{2}+y^{2}+2 x y-4 x+4 y-4=0$$
    Latus rectum length $$ =2 \times $$ (distance of focus from directrix  ) 
    $$=2\left|\dfrac{0-0+2}{\sqrt{1^{2}+1^{2}}}\right| $$
    $$=2 \sqrt{2}$$
    Solving parabola with $$ x $$ -axis,
    $$x^{2}-4 x-4 =0 $$
    $$\Rightarrow x =\dfrac{4 \pm \sqrt{32}}{2}=2 \pm 2 \sqrt{2}$$
    $$ \Rightarrow $$ Length of chord on $$ x $$ -axis is $$ 4 \sqrt{2} $$
    Since the chord $$ 3 x+2 y=0 $$ passes through the focus, it is focal chord.
    Hence, tangents at the extremities of chord are perpendicular.

  • Question 9
    1 / -0
    The length of the latus rectum of the parabola whose focus is $$\left (\frac{u^{2}} {2g} \sin 2\alpha, -\frac{u^{2}} {2g} \cos 2 \alpha  \right )$$ and directrix is $$y = \frac{u^{2}} {2g}$$ is 
    Solution
    Focus of parabola is $$\left (\frac{u^{2}} {2g} \sin 2\alpha, -\frac{u^{2}} {2g} \cos 2 \alpha  \right )$$ and directrix is $$y = \frac{u^{2}} {2g}$$
    Length of latus rectum
    $$ = 2 \times$$ distance of focus form directrix
    $$ = 2 \times  \left |\dfrac{-\frac{u^{2}} {2g} \cos 2 \alpha - \frac{u^{2}} {2g}} {\sqrt{1}}  \right | $$
    $$= \dfrac{2u^{2}} {g} \cos^{2} \alpha$$

  • Question 10
    1 / -0

    Directions For Questions

    A curve is represented by C = $$21 x^{2}- 6xy+ 29y^{2}+ 6x- 58y- 151=0$$

    ...view full instructions

    The lengths of axes 
    Solution
    $$21x^{2}- 6xy+ 29y^{2}+ 6x-58y-151=0$$
    $$3(x-3y+3)^{2}+ 2(3x+y-1)^{2}=180$$
    $$\dfrac{(x-3y+3)^{2}}{60}+ \dfrac{(3x+y-1)^{2}}{90}=1 $$
    $$(\dfrac{x-3y+3}{\sqrt{1+3^{2}}\sqrt{6}})^{2}+ (\dfrac{3x+y-1}{\sqrt{1+ 3^{2}3}})^{2}=1 $$
    Thus C is an ellipse whose lengths of axes are $$6, 2\sqrt{6}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now