The distance between the focus and the tangent at the
$$\text { vertex }=\dfrac{|0-0+1|}{\sqrt{1^{2}+1^{2}}}=\dfrac{1}{\sqrt{2}}$$
The directrix is the line parallel to the tangent at vertex and at a distance $$ 2 \times \dfrac{1}{\sqrt{2}} $$ from the focus.
Let equation of directrix is
$$x-y+\lambda=0$$
$$\text { where } \quad \dfrac{\lambda}{\sqrt{1^{2}+1^{2}}}=\dfrac{2}{\sqrt{2}} $$
$$\Rightarrow \quad \lambda=2$$
Let $$ P(x, y) $$ be any moving point on the parabola, then
$$O P =P M $$
$$\Rightarrow x^{2}+y^{2} =\left(\dfrac{x-y+2}{\sqrt{1^{2}+1^{2}}}\right)^{2}$$
$$ \Rightarrow 2 x^{2}+2 y^{2}=(x-y+2)^{2}$$
$$\Rightarrow x^{2}+y^{2}+2 x y-4 x+4 y-4=0$$
Latus rectum length $$ =2 \times $$ (distance of focus from directrix )
$$=2\left|\dfrac{0-0+2}{\sqrt{1^{2}+1^{2}}}\right| $$
$$=2 \sqrt{2}$$
Solving parabola with $$ x $$ -axis,
$$x^{2}-4 x-4 =0 $$
$$\Rightarrow x =\dfrac{4 \pm \sqrt{32}}{2}=2 \pm 2 \sqrt{2}$$
$$ \Rightarrow $$ Length of chord on $$ x $$ -axis is $$ 4 \sqrt{2} $$
Since the chord $$ 3 x+2 y=0 $$ passes through the focus, it is focal chord.
Hence, tangents at the extremities of chord are perpendicular.