Self Studies

Conic Sections Test - 51

Result Self Studies

Conic Sections Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The centre of a circle whose end points of a diameter are $$(-6,3)$$ and $$(6,4)$$ is
    Solution

    $${\textbf{Step 1: Compare the coordinates of given points with the end points of line.}}$$

                    $${\text{Given end point of diameter are}}$$$$\left( { - 6,3} \right)$$$${\text{and}}$$$$\left( {6,4} \right)$$

                    $${\text{Comparing with}}$$ $$\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$$

                    $${\text{Here,}}$$$${x_1} =  - 6,{y_1} = 3,{x_2} = 6,{y_2} = 3$$

    $${\textbf{Step 2: Put these values in eqn of mid-point of a line.}}$$

                    $${\text{Now, Centre of a circle is mid - point of the diameter}}{\text{.}}$$

                    $${\text{Mid-point of a line is given by=}}$$ $$\left( {\frac{{{x_1} + {x_2}}}{2}} \right),\left( {\frac{{{y_1} + {y_2}}}{2}} \right)$$

                    $${\text{Therefore, centre of circle is   =}}$$$$\left( {\frac{{ - 6 + 6}}{2}} \right),\left( {\frac{{3 + 4}}{2}} \right)$$

                                                                          $$ = \left( {0,\frac{7}{2}} \right)$$

    $${\textbf{Final Answer: Hence, the required answer is}}$$ $$\mathbf{\left( {0,\frac{7}{2}} \right).}$$

  • Question 2
    1 / -0

    Directions For Questions

    The ellipse $$\dfrac{x^{2}}{a^{2}}= \dfrac{y^{2}}{b^{2}}=1$$ is such that it has the least area but contains the circle$$(x-1)^{2}+ y^{2}=1 $$

    ...view full instructions

    Length of latus rectum of the ellipse is 
    Solution
    Solving both equations, we have 
                    $$\dfrac{x^{2}}{a^{2}}+ \dfrac{1-(x-1)^{2}}{b^{2}}=1 $$
               $$b^{2}x^{2}+ a^{2}[1- (x-1)^{2}]= a^{2}b^{2}$$
          $$(b^{2}- a^{2})x^{2}+ 2a^{2}x- a^{2}b^{2}=0$$  ........... (i)
    for least area circle must touch the ellipse 
       Discriminant of (1) is zero 
               $$4a^{4}+ 4a^{2}b^{2}(b^{2}- a^{2})=0$$
                  $$a^{2}+ b^{2}(b^{2}- a^{2})=0$$
               $$a^{2}+ b^{2}(-a^{2}e^{2})=0$$
                $$1- b^{2}e^{2}=0 \implies b=\dfrac{1}{e}$$
    Also               $$a^{2}= \dfrac{b^{2}}{1-e^{2}}=\dfrac{1}{e^{2}(1-e^{2})}$$
                         $$a=\dfrac{1}{e\sqrt{1- e^{2}}}$$
    Let S be the area of the ellipse . 
                                     $$S= \pi ab= \dfrac{\pi}{e^{2}\sqrt{1- e^{2}}}$$
                                       $$=\dfrac{\pi}{\sqrt{e^{4}- e^{6}}}$$
    Area is maximum if f(e) =$$e^{4}- e^{6}$$ is maximum 
    when                    f'(e)=$$ 4e^{3}- 6e^{5}=0$$
    or                      $$e=\sqrt{\dfrac{2}{3}}$$( which is point of maxima for f(e))
                S is least when e=$$\sqrt{\dfrac{2}{3}}$$
               Ellipse is $$2x^{2}+ 6y^{2}=9$$

    Length of latus rectum of ellipse is $$\dfrac{2b^{2}}{a}= \dfrac{2\dfrac{9}{4}}{\dfrac{9}{2}}=1 $$
  • Question 3
    1 / -0

    Directions For Questions

    For all the real p, the line $$2px + y\sqrt{1- p^{2}}=1 $$ touches a fixed ellipse whose axes are coordinate 

    ...view full instructions

    The foci of ellipse are 
    Solution
    Let the ellipse be $$\dfrac{x^{2}}{a^{2}}+ \dfrac{y^{2}}{b^{2}}$$1 .
    The line y=$$mx \pm \sqrt{a^{2}m^{2} + b^{2}}$$ touches the ellipse for all m. 

    Hence, it is identical with 
                                          $$y=-\dfrac{2px}{\sqrt{1-p^{2}}}+ \dfrac{1}{\sqrt{1-p^{2}}}$$
    Hence,                 $$m=- \dfrac{2p}{\sqrt{1-p^{2}}}$$
     and                 $$a^{2}m^{2}+ b^{2}= \dfrac{1}{1-p^{2}}$$
                       $$a^{2}\dfrac{4p^{2}}{1-p^{2}}+ b^{2}= \dfrac{1}{1-p^{2}}$$
      $$p^{2}(4a^{2}- b^{2}) + b^{2}-1=0$$

    This equation is true for all real p if $$b^{2}=1 $$ and $$4a^{2}= b^{2}$$
                      $$b^{2}=1 \, and \, a^{2}=\dfrac{1}{4}$$
    Therefore, the equation of the ellipse is 
                     $$\dfrac{x^{2}}{1/4}+ \dfrac{y^{2}}{1}=1 $$
    If e is its eccentricity , then 
    $$\dfrac{1}{4}=1- e^{2} \implies e^{2}=\dfrac 34 \implies e=\dfrac{\sqrt{3}}{2}$$

    $$be=\dfrac{\sqrt{3}}{2}$$, hence foci are $$(0, \pm \dfrac{\sqrt{3}}{2})$$
  • Question 4
    1 / -0
    Length if semi latus rectum of ellipse $$x^2 + 4y^2 = 12$$ will be :
    Solution

  • Question 5
    1 / -0
    The hyperbola $$\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$$ has its conjugate axis of length $$5$$ and passes through the point $$(2, 1)$$. The length of latus rectum is :
    Solution
    $$b=\dfrac{5}{2}$$
    $$(2,1)$$ lies on $$\dfrac{x^{2}}{a^{2}}-\dfrac{4y^{2}}{25}=1$$
    $$\therefore \dfrac{4}{a^{2}}=\dfrac{29}{25}$$
    $$\Rightarrow a=\dfrac{10}{\sqrt{29}}$$
    Latus rectum $$\dfrac{2b^{2}}{a}=2\left ( \dfrac{25}{4} \right ).\dfrac{\sqrt{29}}{10}$$
    $$=\dfrac{5}{4}\sqrt{29}$$
  • Question 6
    1 / -0
    $$f(\displaystyle \mathrm{m}_{\mathrm{i}}, \frac{1}{\mathrm{m}_{\mathrm{i}}})$$ , $$\mathrm{i}=1,2,3,4$$ are four distinct points on the circle with centre origin, then value of $$\mathrm{m}_{1}\mathrm{m}_{2}\mathrm{m}_{3}\mathrm{m}_{4}$$ is equal to
    Solution

    Equation of circle having centre of origin $$(0,0)$$ and radius $$=r$$,

    $$S_{1};x^{2}+y^{2}=r^{2}----(1)$$

    $$\therefore f(m_{1},\dfrac{1}{m_{2}}),f(m_{2},\dfrac{1}{m_{2}}),--f(m_{4},\dfrac{1}{m_{4}})$$
    These points lie on $$S_{1}$$.

    Let $$\displaystyle f(m, \frac{1}{m})$$ is point lie on S_{1},

    $$m^{2}+\dfrac{1}{m^{2}}=r^{2}$$

    $$m^{4}+1-r^{2}m^{2}=0$$

    $$m^{4}-1-r^{2}m^{2}+1=0$$

    $$m_{1},m_{2},m_{3}$$ and $$m_{4}$$ are roots of this equation

    So, $$m_{1}m_{2}m_{3}m_{4} =1$$

  • Question 7
    1 / -0
    lf the equation $$136 (x^{2}+y^{2})=(5x+3y+7)^{2}$$ represents a conic, then its length of latus rectum is
    Solution

    $$136 (x^{2}+y^{2})=(5x+3y+7)^{2}$$

    $$ \Rightarrow \displaystyle (x-0)^2+(y-0)^2= \dfrac{1}{136}(5x+3y+7)^{2}$$

    $$ \Rightarrow \displaystyle (x-0)^2+(y-0)^2= \left( \frac{1}{2}\right)^2 \left(\frac{5x+3y+7}{\sqrt{34}} \right)^2$$

    From the above form, we get focus of the conic has coordinates $$(0,0)$$, and directrix has equation $$5x+3y+7=0$$ and eccentricity $$e=\dfrac{1}{2}$$

    Distance between focus and directrix $$=\dfrac{7}{\sqrt{34}}$$

    Length of latus rectum$$=2\dfrac{b^2}{a}=2 \times e \times$$ distance bet. focus and directrix$$=2 \times \dfrac{1}{2} \times \dfrac{7}{\sqrt{34}}$$

    $$= \dfrac{7}{\sqrt{34}}$$


    Hence, option B.

  • Question 8
    1 / -0
    The graph of the curve $$x^2 + y^2 - 2xy - 8x - 8y + 32 = 0$$ falls wholly in the
    Solution
    $$x^2 + y^2 - 2xy - 8x - 8y + 32 = 0$$
    $$\Rightarrow (x-y)^2 = 8 (x + y - 4)$$
    is a parabola whose axis is $$x - y = 0$$ and the tangent at the vertex is $$x + y - 4 = 0$$.
    Also, when $$y = 0$$, we have
    $$x^2 - 8x + 32 = 0$$
    which gives no real values of $$x$$.
    when $$x = 0$$, we have $$y^2 - 8y + 32 = 0$$ which gives no real values of $$y$$.
    So, the parabola does not intersect the axes. Hence, the graph falls in the first quadrant.
  • Question 9
    1 / -0
    A point $$P(x, y)$$ moves in $$XY$$ plane such that $$x = a\cos^2 \theta$$ and $$y = 2a \sin \theta$$, where $$\theta$$ is a parameter. The locus of the point $$P$$ is
    Solution
    $$y^2=4a^{2}\sin^{2}{\theta}=$$
            $$=4a^{2}-4ax=-4a(x-a)$$
    Now, since $$0\le\cos^{2}{\theta}\le{1}$$ 
    $$\Rightarrow 0\le x \le a$$             
    Also, $$-1\le\sin{\theta}\le{1}$$
    $$\Rightarrow -2a\le y \le 2a$$
    So, the locus of $$P$$ is a part of parabola.
  • Question 10
    1 / -0
    Let P point on the circle $$x^2 + y^2 = 9$$, Q a point on the line $$7x + y + 3 = 0$$, and the perpendicular bisector of PQ be the line $$x - y + 1 = 0$$. Then the coordinate of P are
    Solution
    Any point on the lines $$7x + y + 3 = 0$$ is $$Q (t, -3 -7 t),       t  \in R.$$
    Now P $$(h, k)$$ is image of point Q in the line $$x - y +1 = 0$$
    Then, $$\displaystyle \frac{h - t}{1} = \frac{k - (-3 - 7 t)}{-1}$$
             $$ = \displaystyle - \frac{2 (t - (-3 - 7t) + 1)}{1+1}$$
             $$ = -8t - 4$$
    $$\Rightarrow       (h, k) \equiv (-7t - 4, t + 1)$$
    This point lies on the circle $$x^2 + y^2 = 9$$
    $$\Rightarrow (-7t - 4)^2 + (t + 1)^2 = 9$$
    $$\Rightarrow 50 r^2 + 58t + 8 = 0$$
    $$\Rightarrow 25r^2 + 19t + 4 = 0$$
    $$ \Rightarrow (25 t + 4) (t + 1) = 0$$
    $$\Rightarrow t = -4/25, t = 1$$
    $$\Rightarrow (h, k) = \displaystyle \left ( -\frac{72}{25}, \frac{21}{25} \right ) $$ or $$(3, 0)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now