Equation of parabola is $$y^2=8x$$
Equation of circle is $$x^2+y^2=9$$
To find point of intersection of both, put equation of parabola in equation of circle.
$$\therefore x^2+8x=9$$
$$\therefore x^{ 2 }+8x-9=0$$
$$\therefore x^{ 2 }+9x-x-9=0$$
$$\therefore x\left( x+9 \right) -1\left( x+9 \right) =0$$
$$\therefore \left( x+9 \right) \left( x-1 \right) =0$$
$$\therefore x=-9$$ and $$x=1$$
But, $$x\neq -9$$ as $$y^2$$ cannot be negative
$$\therefore x=1$$
From equation of parabola,
$${ y }^{ 2 }=8$$
$$\therefore { y }=\pm 2\sqrt { 2 }$$
Thus, points of intersection are $$P\left( 1,2\sqrt { 2 } \right)$$ and $$Q\left( 1,-2\sqrt { 2 } \right)$$
Consider tangent to the circle which intersects x axis at point R.
Equation of tangent is,
$$x{ x }_{ 1 }+y{ y }_{ 1 }=9$$
$$\therefore x\left( 1 \right) +y\left( 2\sqrt { 2 } \right) =9$$
$$\therefore x+2\sqrt { 2 } y=9$$
When $$y=0$$, $$x=9$$
Thus, coordinates of point R are $$R\left( 9,0 \right)$$
Consider tangent to the parabola which intersects x axis at point S.
Equation of tangent is,
$$y{ y }_{ 1 }=4a\left( x+{ x }_{ 1 } \right)$$
$$\therefore y\left( 2\sqrt { 2 } \right) =8\left( x+1 \right)$$
When $$y=0$$, $$x=-1$$
Thus, coordinates of point S are $$R\left( -1,0 \right)$$
Area of triangle PQS is,
$$A\left( \triangle PQS \right) =\dfrac { 1 }{ 2 } \times PQ\times SM$$
$$\therefore A\left( \triangle PQS \right) =\dfrac { 1 }{ 2 } \times 4\sqrt { 2 } \times 2$$
$$\therefore A\left( \triangle PQS \right) =4\sqrt { 2 }$$
Area of triangle PQR is,
$$A\left( \triangle PQR \right) =\dfrac { 1 }{ 2 } \times PQ\times RM$$
$$\therefore A\left( \triangle PQR \right) =\dfrac { 1 }{ 2 } \times 4\sqrt { 2 } \times 8$$
$$\therefore A\left( \triangle PQR \right) =16\sqrt { 2 }$$
$$\therefore \dfrac { A\left( \triangle PQS \right) }{ A\left( \triangle PQR \right) } =\dfrac { 4\sqrt { 2 } }{ 16\sqrt { 2 } }$$
$$\therefore \dfrac { A\left( \triangle PQS \right) }{ A\left( \triangle PQR \right) } =1:4$$