Self Studies

Conic Sections Test - 54

Result Self Studies

Conic Sections Test - 54
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$S_{1}$$ and $$S_{2}$$ are the foci of an ellipse of major axis of length 10 units, and P is any point on the ellipse such that the perimeter or triangle $$PS_{1}S_{2}$$ is 15. Then the eccentricity of the ellipse is
    Solution

  • Question 2
    1 / -0
    $$Center\quad of\quad the\quad hyperbola\quad { x }^{ 2 }+4{ y }^{ 2 }+6xy+8x-2y+7=0\quad is\quad $$
    Solution
    Given Hyperbola: $$x^{2}+4y^{2}+6xy+8x-2y+7=0$$
    Centre: Point of intersection of asymptotes of hyperbola.
    Now finding Asymptotes of given equation, taking equation of asymptote $$y=mx+c$$ by replacing $$x\rightarrow 1, y\rightarrow m$$ in $$\phi_n(m)$$
    When $$n=2$$, $$\phi_{2}(m)=1+4m^{2}+6m$$
    $$\phi_{1}(m)=8-2m$$
    $$\phi_{0}(m)=7$$
    $$\phi_{2}^{1}(m)=8m+6$$
    $$\phi_{1}(m)=8-2m$$

    Putting $$\phi_{2}(m)=0$$
    $$\Rightarrow 1+6m+4m^{2}=0$$
    $$\Rightarrow  m=\cfrac{-6\pm \sqrt {36-16}}{2(4)}$$
    $$\Rightarrow m=\cfrac{-6\pm\sqrt 20}{2(4)}$$
    $$\Rightarrow m=\cfrac{-3\pm \sqrt 5}{4}$$
    So, m$$=\cfrac{-3+\sqrt 5}{4}, \cfrac{-3-\sqrt 5}{4}$$
    Value of $$c$$, when $$m$$ is different
    $$c= \cfrac{-\phi_{1}(m)}{\phi_{2}^{'}(m)}=\cfrac{8-2m}{8m+6}$$

    For $$m=\cfrac{-3+\sqrt 5}{4}, c=\cfrac{8-2(\cfrac{-3+\sqrt 5}{4})}{8\cfrac{-3+\sqrt 5}{4})+6}=\cfrac{3-\sqrt 5+16}{-6+2\sqrt 5+6}=\cfrac{19\sqrt 5-5}{10}$$

    For $$m=\cfrac{-3-\sqrt 5}{4}, c=\cfrac{8-2(\cfrac{-3-\sqrt 5}{4})}{8\cfrac{-3-\sqrt 5}{4})+6}=\cfrac{19+15}{-2 \sqrt 5}=\cfrac{-(19\sqrt 5+5)}{10}$$
    Equation of Asymptotes : $$y=\cfrac{-3+\sqrt 5}{4}x +\cfrac{19\sqrt 5-5}{10}$$ & $$y=\cfrac{-3-\sqrt 5}{4}x-(\cfrac{5+19\sqrt 5}{10})$$
    On solving them for x & y, putting LHS-RHS
    $$\Rightarrow 0=\cfrac{\sqrt 5}{2}x+\cfrac{19\sqrt 5}{5} \Rightarrow x=\cfrac{-38}{5}$$
    Now putting values of x in Asymptotes equation, we get
    $$y=\cfrac{-3-\sqrt 5(-19)}{10}+\cfrac{+5+19\sqrt 5}{10}=\cfrac{+52}{10}$$
    Centre$$(\cfrac{-38}{5}, \cfrac{+52}{10})$$.
  • Question 3
    1 / -0
    'O' is the vertex of the parabola $${ y }^{ 2 }=8x$$ and L is the upper end of the latus rectum. If LH is drawn perpendicular to OL meeting OX in H, then the length of the double ordinate through H is $$\lambda \sqrt { 5 } $$ where $$\lambda $$ is equal to 
    Solution

  • Question 4
    1 / -0
    Which of the following equations does not represent a hyperbola?
    Solution

  • Question 5
    1 / -0
    The set of points $$(x, y)$$ whose distance from the line $$y = 2x + 2$$ is the same as the distance from $$(2, 0)$$ is a parabola. This parabola is congruent to the parabola in standard form $$y = Kx^{2}$$ for some $$K$$ which is equal to
    Solution
    Distance from $$(2, 0)$$ to $$2x - y + 2 = 0$$ is equal to $$\dfrac {6}{\sqrt {5}} =$$ semi latus rectum
    $$\therefore$$ length of latus rectum is $$\dfrac {12}{\sqrt {5}}$$
    $$\therefore x^{2} = \dfrac {1}{K}y \Rightarrow \dfrac {1}{K} = \dfrac {12}{\sqrt {5}}$$
    $$\Rightarrow K = \dfrac {\sqrt {5}}{12}$$.
  • Question 6
    1 / -0

    Directions For Questions

    Circle touching a line $$L=0$$ at a point $$\left({x}_{1},{y}_{1}\right)$$ on it is 
    $${\left(x-{x}_{1}\right)}^{2}+{\left(y-{y}_{1}\right)}^{2}+\lambda L=0,\lambda\in R$$ 
    Circle through the two points $$A\left({x}_{1},{y}_{1}\right)$$ and $$B\left({x}_{2},{y}_{2}\right)$$ is
    $$\left(x-{x}_{1}\right)\left(x-{x}_{2}\right)+\left(y-{y}_{1}\right)\left(y-{y}_{2}\right)+\lambda L=0 , \lambda \in R$$
    where $$L=0$$ is the equation of the line $$AB$$
    On the basis of the above information,answer the following questions:

    ...view full instructions

    From the point $$A\left(0,3\right)$$ on the circle $${x}^{2}-4x+{\left(y-3\right)}^{2}=0$$ a chord $$AB$$ is drawn and extended to a point $$M$$ such that $$AM=2AB$$.The locus is
    Solution
    $${x}^{2}-4x+{\left(y-3\right)}^{2}=0$$
    Add $$4$$ both sides of the above equation, we get
    $$\Rightarrow {x}^{2}-4x+4+{\left(y-3\right)}^{2}=4$$
    $$\Rightarrow {\left(x-2\right)}^{2}+{\left(y-3\right)}^{2}=4$$
    Take $$B=\left(2+2\cos\theta,3+2\sin\theta\right)$$
    $$\therefore 2+2\cos\theta=\dfrac{x+0}{2} , 3+2\sin\theta=\dfrac{y+3}{2}$$
    or $$2\cos\theta=\dfrac{x}{2}-2, 2\sin\theta=\dfrac{y+3}{2}-3$$
    or $$2\cos\theta=\dfrac{x-4}{2}, 2\sin\theta=\dfrac{y-3}{2}$$
    Eliminating $$\theta$$ we get
    $${\left(2\cos\theta\right)}^{2}+{\left(2\sin\theta\right)}^{2}={\left(\dfrac{x-4}{2}\right)}^{2}+{\left(\dfrac{y-3}{2}\right)}^{2}$$
    $$4={\left(\dfrac{x-4}{2}\right)}^{2}+{\left(\dfrac{y-3}{2}\right)}^{2}$$
    $${\left(x-4\right)}^{2}+{\left(y-3\right)}^{2}=16$$
    On simplifying , we get
    $${x}^{2}+{y}^{2}-8x-6y+9=0$$
  • Question 7
    1 / -0
    The line $$2x + y = 1$$ is tangent to the hyperbola $$\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then eccentricity of the hyperbola.
    Solution

  • Question 8
    1 / -0
    The equation of the circle having the lines $$x^2 + 2xy + 3x + 6y = 0$$ as its normals and having size just sufficient to contain the circle $$x (x - 4) + y(y - 3) = 0$$ is
    Solution
    Pair of lines:
    $$x^{2}+2xy+3x+6y=0$$
    $$\Rightarrow x(x+2y)+3(x+2y)=0$$
    $$\Rightarrow (x+2y)(x+3)=0$$
    $$\Rightarrow x+2y=0$$
    and $$x+3=0$$
    Are the two normals and their point of intersection must be the centre of the circle.
    $$\Rightarrow x=-3$$
    and $$y=\dfrac{-x}{2}=\dfrac{3}{2}$$
    $$\Rightarrow (-3,\dfrac{3}{2}) $$ is the centre of required circle.
    ($$\because x(x-4)+y(y-3)=0$$  is the diametric form of the circle. Hence, $$(0,0)$$ and $$(4,3)$$ are the diametric end points.)
    $$\Rightarrow$$ Centre $$\rightarrow (\dfrac{0+4}{2},\dfrac{0+3}{2})\rightarrow (2,\dfrac{3}{2})$$
    radius $$=\dfrac{1}{2}(\sqrt{16+9})$$
    $$=\dfrac{5}{2}$$
    The required circle with centre $$(-3,\dfrac{3}{2})$$ is just sufficient to contain the circle
    $$x(x-4)+y(y-3)=0$$
    $$\therefore$$ radius of required circle
    =distance between $$(-3,\dfrac{3}{2})$$ and $$(2,\dfrac{3}{2})$$   $$+$$ radius of given circle.
    $$=\sqrt{(-3-2)^{2}+0}+\dfrac{5}{2}$$
    $$=5+\dfrac{5}{2}=\dfrac{15}{2}$$
    $$\therefore$$ Equation of required circle:
    $$\Rightarrow (x+3)^{2}+(y-\dfrac{3}{2})^{2}=\dfrac{225}{4}$$
    $$\Rightarrow x^{2}+y^{2}+9+\dfrac{9}{4}+6x-3y=\dfrac{225}{4}$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9+\dfrac{9}{4}-\dfrac{225}{4}=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9-\dfrac{216}{4}=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y+9-54=0$$
    $$\Rightarrow x^{2}+y^{2}+6x-3y-45=0$$
    $$\therefore B)$$ Answer.

  • Question 9
    1 / -0
    $$LL^1$$ is the latus rectum of an ellipse and $$\Delta S^1LL^1$$ is an equilateral triangle. Then $$e=?$$
    Solution
    Let equation of the ellipse is $$\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ b^{ 2 } } =1$$

    Refer the figure. By distance formula,
    $${ S }^{ ' }L=\sqrt { { \left( ae-\left( -ae \right)  \right)  }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a }  \right)  }^{ 2 } }$$
    $$\therefore { S }^{ ' }L=\sqrt { { \left( 2ae \right)  }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a }  \right)  }^{ 2 } }$$
    $$\therefore { S }^{ ' }L=\sqrt { 4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } }  }$$
    $$\therefore { \left( { S }^{ ' }L \right)  }^{ 2 }=4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } }$$          (1)

    Similarly, $$L{ L }^{ ' }=\sqrt { { \left( ae-ae \right)  }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a } -\left( -\frac { { b }^{ 2 } }{ a }  \right)  \right)  }^{ 2 } }$$
    $$\therefore L{ L }^{ ' }=\sqrt { { \left( \frac { { b }^{ 2 } }{ a } +\frac { { b }^{ 2 } }{ a }  \right)  }^{ 2 } } $$
    $$\therefore L{ L }^{ ' }=\sqrt { { \left( \frac { 2{ b }^{ 2 } }{ a }  \right)  }^{ 2 } } $$
    $$\therefore L{ L }^{ ' }=\sqrt { { \frac { 4{ b }^{ 4 } }{ { a }^{ 2 } }  } } $$
    $$\therefore { \left( L{ L }^{ ' } \right)  }^{ 2 }=\frac { 4{ b }^{ 4 } }{ { a }^{ 2 } } $$          (2)

    Now, given $$\triangle { S }^{ ' }LL^{ ' }$$ is equilateral triangle
    $$\therefore { \left( { S }^{ ' }L \right)  }^{ 2 }={ \left( L{ L }^{ ' } \right)  }^{ 2 }$$

    $$\therefore 4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } } =\frac { 4{ b }^{ 4 } }{ { a }^{ 2 } }$$

    $$\therefore 4{ a }^{ 2 }{ e }^{ 2 }=\frac { 3{ b }^{ 4 } }{ { a }^{ 2 } } $$

    $$\therefore 4{ e }^{ 2 }=\frac { 3{ b }^{ 4 } }{ { a }^{ 4 } } $$       (3)

    Now, $$\frac { { b }^{ 2 } }{ { a }^{ 2 } } =1-{ e }^{ 2 }$$
    $$\therefore { \left( \frac { { b }^{ 2 } }{ { a }^{ 2 } }  \right)  }^{ 2 }={ \left( 1-{ e }^{ 2 } \right)  }^{ 2 }$$
    $$\therefore \frac { { b }^{ 4 } }{ { a }^{ 4 } } ={ \left( 1-{ e }^{ 2 } \right)  }^{ 2 }$$           (4)

    From equations (3) and (4), we can write,
    $$4{ e }^{ 2 }=3{ \left( 1-{ e }^{ 2 } \right)  }^{ 2 }$$

    $$\therefore 4{ e }^{ 2 }=3\left( 1-2{ e }^{ 2 }+{ e }^{ 4 } \right)$$

    $$\therefore 4{ e }^{ 2 }=3-6{ e }^{ 2 }+3{ e }^{ 4 }$$

    $$\therefore 3{ e }^{ 4 }-10{ e }^{ 2 }+3=0$$

    $$\therefore 3{ e }^{ 4 }-9{ e }^{ 2 }-{ e }^{ 2 }+3=0$$

    $$\therefore 3{ e }^{ 2 }\left( { e }^{ 2 }-3 \right) -1\left( { e }^{ 2 }-3 \right) =0$$

    $$\therefore \left( 3{ e }^{ 2 }-1 \right) \left( { e }^{ 2 }-3 \right) =0$$

    $$\therefore { e }^{ 2 }=\frac { 1 }{ 3 } $$ or $${ e }^{ 2 }=3$$

    $$\therefore { e }=\frac { 1 }{ \sqrt { 3 }  } $$ or $${ e }=\sqrt { 3 }$$

    But $${ e }<1$$
    $$\therefore { e }\neq \sqrt { 3 } $$

    $$\therefore { e }=\frac { 1 }{ \sqrt { 3 }  } $$

  • Question 10
    1 / -0
    The normal at $$ P(8, 8)$$ to the parabola $$y^2=8x$$ cuts it again at Q then PQ =
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now