Let equation of the ellipse is $$\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ b^{ 2 } } =1$$
Refer the figure. By distance formula,
$${ S }^{ ' }L=\sqrt { { \left( ae-\left( -ae \right) \right) }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a } \right) }^{ 2 } }$$
$$\therefore { S }^{ ' }L=\sqrt { { \left( 2ae \right) }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a } \right) }^{ 2 } }$$
$$\therefore { S }^{ ' }L=\sqrt { 4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } } }$$
$$\therefore { \left( { S }^{ ' }L \right) }^{ 2 }=4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } }$$ (1)
Similarly, $$L{ L }^{ ' }=\sqrt { { \left( ae-ae \right) }^{ 2 }+{ \left( \frac { { b }^{ 2 } }{ a } -\left( -\frac { { b }^{ 2 } }{ a } \right) \right) }^{ 2 } }$$
$$\therefore L{ L }^{ ' }=\sqrt { { \left( \frac { { b }^{ 2 } }{ a } +\frac { { b }^{ 2 } }{ a } \right) }^{ 2 } } $$
$$\therefore L{ L }^{ ' }=\sqrt { { \left( \frac { 2{ b }^{ 2 } }{ a } \right) }^{ 2 } } $$
$$\therefore L{ L }^{ ' }=\sqrt { { \frac { 4{ b }^{ 4 } }{ { a }^{ 2 } } } } $$
$$\therefore { \left( L{ L }^{ ' } \right) }^{ 2 }=\frac { 4{ b }^{ 4 } }{ { a }^{ 2 } } $$ (2)
Now, given $$\triangle { S }^{ ' }LL^{ ' }$$ is equilateral triangle
$$\therefore { \left( { S }^{ ' }L \right) }^{ 2 }={ \left( L{ L }^{ ' } \right) }^{ 2 }$$
$$\therefore 4{ a }^{ 2 }{ e }^{ 2 }+\frac { { b }^{ 4 } }{ { a }^{ 2 } } =\frac { 4{ b }^{ 4 } }{ { a }^{ 2 } }$$
$$\therefore 4{ a }^{ 2 }{ e }^{ 2 }=\frac { 3{ b }^{ 4 } }{ { a }^{ 2 } } $$
$$\therefore 4{ e }^{ 2 }=\frac { 3{ b }^{ 4 } }{ { a }^{ 4 } } $$ (3)
Now, $$\frac { { b }^{ 2 } }{ { a }^{ 2 } } =1-{ e }^{ 2 }$$
$$\therefore { \left( \frac { { b }^{ 2 } }{ { a }^{ 2 } } \right) }^{ 2 }={ \left( 1-{ e }^{ 2 } \right) }^{ 2 }$$
$$\therefore \frac { { b }^{ 4 } }{ { a }^{ 4 } } ={ \left( 1-{ e }^{ 2 } \right) }^{ 2 }$$ (4)
From equations (3) and (4), we can write,
$$4{ e }^{ 2 }=3{ \left( 1-{ e }^{ 2 } \right) }^{ 2 }$$
$$\therefore 4{ e }^{ 2 }=3\left( 1-2{ e }^{ 2 }+{ e }^{ 4 } \right)$$
$$\therefore 4{ e }^{ 2 }=3-6{ e }^{ 2 }+3{ e }^{ 4 }$$
$$\therefore 3{ e }^{ 4 }-10{ e }^{ 2 }+3=0$$
$$\therefore 3{ e }^{ 4 }-9{ e }^{ 2 }-{ e }^{ 2 }+3=0$$
$$\therefore 3{ e }^{ 2 }\left( { e }^{ 2 }-3 \right) -1\left( { e }^{ 2 }-3 \right) =0$$
$$\therefore \left( 3{ e }^{ 2 }-1 \right) \left( { e }^{ 2 }-3 \right) =0$$
$$\therefore { e }^{ 2 }=\frac { 1 }{ 3 } $$ or $${ e }^{ 2 }=3$$
$$\therefore { e }=\frac { 1 }{ \sqrt { 3 } } $$ or $${ e }=\sqrt { 3 }$$
But $${ e }<1$$
$$\therefore { e }\neq \sqrt { 3 } $$
$$\therefore { e }=\frac { 1 }{ \sqrt { 3 } } $$