Self Studies

Conic Sections Test - 55

Result Self Studies

Conic Sections Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider
    the set of hyperbola $$xy = {\text{ }}K,{\text{ K}} \in {\text{R,}}$$  let $${e_1}$$  be eccentricity
    when $$K = \sqrt {2017} $$  and $${e_2}$$ be the
    eccentricity when $$K = \sqrt {2018} $$ , then $${e_1} - {e_2}$$   is equal to 
    Solution

  • Question 2
    1 / -0
    The centre of a circle is $$(2, -3)$$ and the circumference is $$10\pi$$. Then, the equation of the circle is
    Solution

    The circumference of the circle is given as $$10\pi $$.

    $$C = 2\pi r$$

    $$10\pi  = 2\pi r$$

    $$r = \frac{{10\pi }}{{2\pi }}$$

    $$r = 5$$

    The general form of the equation is,

    $${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$$

    The center of the circle is given as $$\left( {h,k} \right) = \left( {2, - 3} \right)$$

    $${\left( {x - 2} \right)^2} + {\left( {y - \left( { - 3} \right)} \right)^2} = {\left( 5 \right)^2}$$

    $${\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 25$$

    $${x^2} + 4 - 4x + {y^2} + 9 + 6y = 25$$

    $${x^2} + {y^2} - 4x + 6y + 13 = 25$$

    $${x^2} + {y^2} - 4x + 6y - 25 + 13 = 0$$

    $${x^2} + {y^2} - 4x + 6y - 12 = 0$$

    Therefore, the equation of the circle is,

    $${x^2} + {y^2} - 4x + 6y - 12 = 0$$

  • Question 3
    1 / -0
    A conic $$C$$ passes through the points $$(2,4)$$ and is such that the segment of any of its tangents at any point contained between the co-ordinate axis is biscected at the point of tangency. Let $$S$$ denotes circle described on the foci $${F_1}$$ and $${F_2}$$ of the conic $$C$$ as diameter.
    Equation of the circle $$S$$ is
    Solution

  • Question 4
    1 / -0
    The centre of a circle passing through the point $$(0,0),(1,0)$$ and touching the circle $$x^{2}+y^{2}=9$$ is ?
    Solution
    Let the circle be$$x^{2}+y^{2}+2gx+2fy+c=0$$
    $$\because$$ It passes through $$(0,0)$$
    $$\Rightarrow 0+c=0$$
    $$\Rightarrow c=0$$
    It also passes through $$(1,0)$$
    $$\Rightarrow 1+0+2g+0+c=0$$
    $$\Rightarrow g=\dfrac{-c-1}{2}=\dfrac{-1}{2}$$
    $$\therefore$$Circle $$\rightarrow x^{2}+y^{2}-x+2fy=0$$
    Centre$$\rightarrow (\dfrac{1}{2},-f)$$
    Other circle : $$x^{2}+y^{2}=9$$
    Centre \rightarrow (0,0)$$
    Radius $$=3$$
    $$\because Circles touches internally.
    $$\therefore $$ Difference between radius = Distance between centres.
    Radius of smaller circle $$=\sqrt{g^{2}+f^{2}-0}=\sqrt{\dfrac{1}{4}+f^{2}}$$
    $$\Rightarrow 3-\sqrt{\dfrac{1}{4}+f^{2}}=\sqrt{(-g-0)^{2}+(-f-0)^{2}}$$
    $$\Rightarrow 3-\sqrt{\dfrac{1 }{4}+f^{2}}=\sqrt{\dfrac{1}{4}+f^{2}}$$
    $$\Rightarrow 2\sqrt{\dfrac{1}{4}+f^{2}}=3$$
    $$\Rightarrow \dfrac{1}{4}+f^{2}=\dfrac{9}{4}$$
    $$\Rightarrow f^{2}=\dfrac{8}{4}=2$$
    $$\Rightarrow f=\pm \sqrt{2}$$
    Hence centre $$\rightarrow (-g,-f)$$
    $$\Rightarrow(\dfrac{1}{2},\pm\sqrt{2})$$
    $$\therefore$$None of the options is correct.

  • Question 5
    1 / -0
    If the centroid of an equilateral triangle  $$(1,1)$$ and its one vertex is $$(-1,2)$$ , then the equation of the circumcircle is 
    Solution

  • Question 6
    1 / -0
    The focus of extremities of the latus rectum of the family of the ellipse  $${b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}{\text{ is }}\left( {b \in R} \right)$$ 
    Solution
    undefined

  • Question 7
    1 / -0
    Circles are drawn passing through the origin $$O$$ to intersect the coordinate axes at point $$P$$ and $$Q$$ such that $$m$$. $$PO+n.OQ=k$$, then the fixed point satisfy all of them, is given by
    Solution
    $${x}^{2}+{y}^{2}+2gx+2fy+c=0$$
    $$C=0$$
    $${x}^{2}+{y}^{2}+2gx+2fy=0$$
    $${x}^{2}+2g\left(x\right)=0$$
    $$x\left(x+2g\right)=0$$
    $${x}^{2}+{y}^{2}+2gx+2fy=0\quad \quad H.O.P+nOQ=k$$
    For$$\left(m, n\right)\quad {m}^{2}+{n}^{2}+2gm+2fn\quad \quad H\left(-2g\right)+n\left(-2f\right)=k$$
    $${m}^{2}+{n}^{2}-k\neq0\quad \quad  2mg-2n7=-k$$
    for$$\left(\dfrac{mk}{{m}^{2}+{n}^{2}}- \dfrac{nk}{{m}^{2}+{n}^{2}}\right)=$$
    $$\left( \dfrac { { m }^{ 2 }{ k }^{ 2 } }{ { \left( { m }^{ 2 }{ +k }^{ 2 } \right)  }^{ 2 } } \quad \dfrac { n^{ 2 }{ k }^{ 2 } }{ { \left( { m }^{ 2 }{ +n }^{ 2 } \right)  }^{ 2 } }  \right) +2g\left( \dfrac { mk }{ { m }^{ 2 }{ +n }^{ 2 } }  \right) +2f\left( \dfrac { nk }{ { m }^{ 2 }{ +n }^{ 2 } }  \right) \\ $$
    $$=\dfrac { { k }^{ 2 }\left( { m }^{ 2 }+{ n }^{ 2 } \right) +k\left( { m }^{ 2 }+{ n }^{ 2 } \right) \left( -k \right)  }{ { \left( { m }^{ 2 }+{ n }^{ 2 } \right)  }^{ 2 } } $$
    $$\Rightarrow \left(\dfrac{mk}{{m}^{2}+{n}^{2}}, \dfrac{nk}{{m}^{2}+{n}^{2}}\right)$$

  • Question 8
    1 / -0
    The vertex $$A$$ of the parabola $${y}^{2}=4ax$$ is joined to any point $$P$$ on it and $$PQ$$ is drawn at right angles to $$AP$$ to meet the axis in $$Q$$. Projection of $$PQ$$ on the axis is equal to
    Solution

  • Question 9
    1 / -0
    If equation $$(5x-1)^{2}+(5y-2)^{2}=(\lambda^{2}-2\lambda+1)(3x+4y-1)^{2}$$ represents an ellipse, then $$\lambda \in$$
    Solution

  • Question 10
    1 / -0
    The locus of the mid points of the portion of the tangents to the ellipse intercepted between the axes
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now