Self Studies

Conic Sections Test - 57

Result Self Studies

Conic Sections Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle which bisects the circumference of the circles  $$x^{2}+y^{2} =1, \;x^{2}+y^{2}-2x =3$$ and $$x^2+y^{2}+2y =3$$ is
    Solution

  • Question 2
    1 / -0
    The locus of point of intersection $$P$$ of tangents to ellipse $$2x^{2}+3y^{2}=6$$ at $$A$$ and $$B$$ if $$AB$$ subtend $$90^{o}$$ angle at centre of ellipse is an ellipse whose eccentricity is equal to 
    Solution

  • Question 3
    1 / -0
    The equation of the circle, passing through the point $$\left(2,8\right)$$, touching the lines $$4x-3y-24=0$$ and $$4x+3y-42=0$$ and having x coordinate of the centre of the circle numerically less then or equal to 8 is
    Solution
    Since $$C\left(\alpha,\beta\right)$$ be the centre of the circle.
    Since the circle passes through the point $$\left(2,8\right)$$
    $$\therefore$$ Radius of the circle$$=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$
    Since the circle touches the lines $$4x-3y-24=0$$ and $$4x+3y-42=0$$
    $$\therefore\left|\dfrac{4\alpha-3\beta-24}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\left|\dfrac{4\alpha+3\beta-42}{\sqrt{{4}^{2}+{5}^{2}}}\right|=\sqrt{{\left(\alpha-2\right)}^{2}+{\left(\beta-8\right)}^{2}}$$        ........$$\left(1\right)$$
    Solving them, we get
    $$4\alpha-3\beta-24=\pm\left(4\alpha+3\beta-42\right)$$     ........$$\left(3\right)$$
    $$\therefore 6\beta=18$$ or $$\beta=3$$ by taking the positive sign
    and $$8\alpha=66$$ or $$\alpha=\dfrac{66}{8}=\dfrac{33}{4}$$ by taking negative sign.
    Given $$\left|\alpha\right|\le 8\Rightarrow -8\le \alpha \le 8$$
    $$\therefore \alpha \neq \dfrac{33}{4}$$
    Put $$\beta=3$$ in equations $$\left(1\right)$$ and $$\left(3\right)$$ and equating, we get
    $${\left(4\alpha-33\right)}^{2}={\left(\alpha-2\right)}^{2}+25$$
    $$\Rightarrow 16{\alpha}^{2}-264\alpha+1089=25{\alpha}^{2}+725-100\alpha$$
    $$\Rightarrow 9{\alpha}^{2}+164\alpha-364=0$$ which is quadratic in $$\alpha$$
    $$\therefore \alpha=\dfrac{-164\pm\sqrt{{164}^{2}-36\times -364}}{2\times 9}=\dfrac{-164\pm\sqrt{{164}^{2}+36\times 364}}{18}$$
               $$=\dfrac{-164\pm\sqrt{40000}}{18}=\dfrac{-164\pm 200}{18}=2,\dfrac{-182}{9}$$
    But $$-8\le \alpha\le 8$$ $$\therefore \alpha=2$$
    Now $${r}^{2}={\left(\alpha-2\right)}^{2}+{\left(3-8\right)}^{2}={\left(2-2\right)}^{2}+{\left(3-8\right)}^{2}=25$$ where $$r$$ is the radius of the circle
    Hence the required equation of the required circle is
    $${\left(x-2\right)}^{2}+{\left(y-3\right)}^{2}=25$$
    $${x}^{2}+{y}^{2}-4x-6y+4+9-25=0$$ or $${x}^{2}+{y}^{2}-4x-6y-12=0$$

  • Question 4
    1 / -0
    A circle has ccentre $$C$$ on axes of parabola and it touches the parabola at point $$P$$. $$CP$$ makes an angle of $$120^{o}$$ with axis of parabola. If radius of circle is $$2$$, then latus rectum of parabola is 
    Solution

  • Question 5
    1 / -0
    If $${ e }_{ 1 }$$ is the eccentricity of the ellipse $$\dfrac { { x }^{ 2 } }{ 16 } +\dfrac { { y }^{ 2 } }{ 25 } =1and{ \quad e }_{ 2 }$$ is the eccentricity of the hyperbola passing through the foci of the ellipse and $${ e }_{ 1 }{ e }_{ 2 }=1$, then equation of the hyperbola is  ___________________.
    Solution

  • Question 6
    1 / -0
    Length of latus rectum of the parabola $$9x^{2}+16y^{2}+24xy-4x+3y=0$$ is :
    Solution

  • Question 7
    1 / -0
    Find the equation of the circle having $$(1, -2)$$ as its centre and passing through the intersection of the lines $$3x+y=14$$ and $$2x+5y=18$$.
    Solution

  • Question 8
    1 / -0
    The equation of the circle passing through $$(4,6)$$ and having centre $$(1,2)$$ is
    Solution
    Let coordinates of point A are $$\left( 4,6 \right) $$
    As circle is passing through point A, point A lies on circle.

    Let center of circle is $$C\left( 1,2 \right) $$
    $$\therefore h=1$$ and $$k=2$$

    Thus, AC is radius of circle.

    By distance formula,
    $$AC=r=\sqrt { { \left( 4-1 \right)  }^{ 2 }+{ \left( 6-2 \right)  }^{ 2 } } $$

    $$\therefore r=\sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } $$

    $$\therefore r=\sqrt { 9+16 } $$

    $$\therefore r=\sqrt { 25 } $$

    $$\therefore r=5$$

    Thus, equation of circle is,
    $${ \left( x-h \right)  }^{ 2 }+{ \left( y-k \right)  }^{ 2 }={ r }^{ 2 }$$

    $${ \left( x-1 \right)  }^{ 2 }+{ \left( y-2 \right)  }^{ 2 }=\left( 5 \right) ^{ 2 }$$

    $${ x }^{ 2 }-2x+1+y^{ 2 }-4y+4=25$$

    $$\therefore { x }^{ 2 }+y^{ 2 }-2x-4y-20=0$$

    Thus, answer is option (A)
  • Question 9
    1 / -0
    If the latus rectum subtends a right angel at the center of a hyperbola, then its eccentricity is 
    Solution

  • Question 10
    1 / -0
    If the length of the latus rectum of the parabola $$289(x-3)^{2}+289(y-1)^{2}=(15x-8y+13)^{2}$$ is $$k$$, then $$[k]=?$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now