Self Studies

Introduction to Three Dimensional Geometry Test - 22

Result Self Studies

Introduction to Three Dimensional Geometry Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points A(1,2,1),B(2,5,2),C(4,4,3)A(1, 2, -1), B(2, 5, -2), C(4, 4, -3) and D(3,1,2)D(3, 1, -2) are
    Solution
    Given, A(1,2,1),B(2,5,2),C(4,4,3),A(1,2,-1), B(2,5,-2), C(4,4,-3), and D(3,1,2)D(3,1,-2)

    ABAB ={=} (21)2+(52)2+(2+1)2\sqrt{{(2-1)}^{2}+{(5-2)}^{2}+{(-2+1)}^{2}} ={=} 11\sqrt{11}

    BCBC ={=} (42)2+(45)2+(3+2)2\sqrt{{(4-2)}^{2}+{(4-5)}^{2}+{(-3+2)}^{2}} ={=} 6\sqrt{6}

    CDCD ={=} (34)2+(14)2+(2+3)2\sqrt{{(3-4)}^{2}+{(1-4)}^{2}+{(-2+3)}^{2}} ={=} 11\sqrt{11}

    DADA ={=} (13)2+(21)2+(1+2)2\sqrt{{(1-3)}^{2}+{(2-1)}^{2}+{(-1+2)}^{2}} ={=} 6\sqrt{6}

    AB=CDAB{=}CD and BC=DABC{=}DA 

    i.e. opposite sides are equal.

    Now Direction ratio of AB=(1,3,1)AB =(1,3,-1) and Direction ratio of BC=(2,1,1)BC= (2,-1,-1)

    AB=i^+j^+k^\vec {AB}=\hat i+\hat j+\hat k     &     BC=2i^j^k^\vec {BC}=2\hat i-\hat j-\hat k

    ABBC=211=0\vec {AB}\cdot \vec {BC}=2-1-1=0

    As the dot product between ABAB and BCBC is 00, that means angle between them is 90o90^o

    Similarly check for BCBC and CDCD, then you find that all angles are equal to 90o90^o and opposite sides are equal.

    Hence, it is a rectangle.
  • Question 2
    1 / -0
    A line passes through two point A(2,3,1)A (2, -3, -1) and B(8,1,2)B (8, -1, 2). The coordinates of a point on this line at a distance of 1414 units from AA are
    Solution
    Given points are A(2,3,1)A(2,-3,-1) and B(8,1,2)B(8,-1,2)
    Therefore direction  ratio of ABAB are l=67,m=27,n=37l = \dfrac{6}{7}, m=\dfrac{2}{7},n= \dfrac{3}{7} or l=67,m=27,n=37l=\dfrac{-6}{7},m= \dfrac{-2}{7},n= \dfrac{-3}{7}
    Hence, coordinates of a point 1414 unit from point AA is given as,(2+14l,3+14m,1+14n)(2+14l,-3+14m,-1+14n)
    (14,1,5)\Rightarrow (14,1,5) or (10,7,7)(-10,-7,-7)
    Hence, option 'A' is correct.
  • Question 3
    1 / -0
    The chord of contact of tangents from a point PP to a circle passes  through qqIf l1l_1 and l2l_2 are the lengths of the tangents from PP and QQ to the circle, then PQPQ is equal to
    Solution
    Let P(x1,y1)P\equiv \left( { x }_{ 1 },{ y }_{ 1 } \right) and Q(x2,y2)Q\equiv \left( { x }_{ 2 },{ y }_{ 2 } \right)
    Let the equation of given circle be x2+y2=a2{ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }
    The equation of chord of contact of tangent drawn from the point P(x1,y1)P\left( { x }_{ 1 },{ y }_{ 1 } \right) to the given circle is xx1+yy1=a2{ xx }_{ 1 }+{ yy }_{ 1 }={ a }^{ 2 }.
    Since it passes through Q(x2,y2)Q\left( { x }_{ 2 },{ y }_{ 2 } \right)
    x1x2+y1y2=a2\therefore { x }_{ 1 }{ x }_{ 2 }+{ y }_{ 1 }{ y }_{ 2 }={ a }^{ 2 } ...(1)
    Now l1=x12+y12a2,l2=x22+y22a2{ l }_{ 1 }=\sqrt { { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }-{ a }^{ 2 } } ,{ l }_{ 2 }=\sqrt { { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } }
    and PQ=(x2x1)2+(y2y1)2=(x12+y12)+(x22+y22)2(x1x2+y1y2)=(x12+y12)+(x22+y22a2)=(x12+y12a2)(x22+y22a2)=l12+l22\\ PQ=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right) }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) }^{ 2 } } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 } \right) +\left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 } \right) -2\left( { x }_{ 1 }{ x }_{ 2 }+{ y }_{ 1 }{ y }_{ 2 } \right) } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 } \right) +\left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } \right) } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }-{ a }^{ 2 } \right) \left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } \right) } \\ =\sqrt { { l }_{ 1 }^{ 2 }+{ l }_{ 2 }^{ 2 } }
  • Question 4
    1 / -0
    Find the coordinates of the point on the xx-axis that is equidistant from P(4,3,1)P(4,3,1) and Q(2,6,2)Q(-2,-6,-2).
    Solution
    Let R(x,0,0)R(x,0,0) be the point on xx-axis which is equidistant from P(4,3,1)P(4,3,1) and Q(2,6,2)Q(-2,-6,-2)
    (x4) 2+(3) 2+(1) 2=(x+2) 2+62+22\Rightarrow { \left( x-4 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 }+{ \left( -1 \right)  }^{ 2 }={ \left( x+2 \right)  }^{ 2 }+{ 6 }^{ 2 }+{ 2 }^{ 2 } gives 12x=18-12x=18 
    So x=1.5x=-1.5 
    Hence,  R(32,0,0)\displaystyle  R\equiv \left( -\frac { 3 }{ 2 } ,0,0 \right)
  • Question 5
    1 / -0
    If (1,1,0),(2,1,8)(1,-1,0),(-2,1,8) and (1,2,7)(-1,2,7) are three consecutive vertices of a parallelogram then the fourth vertex is
    Solution
    Let the fourth vertex be (h,k,l)(h,k,l)
    The midpoints of diagonal will be same
    The midpoints are (0,12,72)(0,\frac{1}{2},\frac{7}{2}) and (h22,k+12,l+82)(\frac{h-2}{2} , \frac{k+1}{2},\frac{l+8}{2})
    If we equate both we get h2=0,k+1=1,l+8=7h-2=0 , k+1=1 , l+8=7
    h=2,k=0,l=1\Rightarrow h=2 , k=0 , l=-1
    So the fourth vertex is (2,0,1)(2,0,-1)
  • Question 6
    1 / -0
    If P(x,y,z)P(x,y,z) is a point on the line segment joining Q(2,2,4)Q(2,2,4) and R(3,5,6)R(3,5,6) such that the projection of OP\overrightarrow { OP } on the axes are  135,195,265\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } respectively, then PP divides QRQR in ratio
    Solution

    Since OP\overrightarrow { OP } has projection  135,195\displaystyle \dfrac { 13 }{ 5 } ,\dfrac { 19 }{ 5 } and  265\displaystyle \dfrac { 26 }{ 5 } on the coordinate axes, therefore  OP=135i+195j+265k\displaystyle \overrightarrow { OP } =\dfrac { 13 }{ 5 } i+\dfrac { 19 }{ 5 } j+\dfrac { 26 }{ 5 } k

    Let PP divides the join of Q(2,2,4)Q\left( 2,2,4 \right) and R(3,5,6)R\left( 3,5,6 \right) in the ratio λ:1\lambda :1.

    The position vector of PP is  (3λ+2λ+1 )i+(5λ+2λ+1 )j+(6λ+4λ+1 )k\displaystyle \left( \dfrac { 3\lambda +2 }{ \lambda +1 }  \right) i+\left( \dfrac { 5\lambda +2 }{ \lambda +1 }  \right) j+\left( \dfrac { 6\lambda +4 }{ \lambda +1 }  \right) k

     135i+195j+265k=(3λ+2λ+1 )i+(5λ+2λ+1 )j+(6λ+4λ+1 )k\displaystyle \therefore \dfrac { 13 }{ 5 } i+\dfrac { 19 }{ 5 } j+\dfrac { 26 }{ 5 } k=\left( \dfrac { 3\lambda +2 }{ \lambda +1 }  \right) i+\left( \dfrac { 5\lambda +2 }{ \lambda +1 }  \right) j+\left( \dfrac { 6\lambda +4 }{ \lambda +1 }  \right) k

     3λ+2λ+1=135,5λ+2λ+1=195,6λ+4λ+1=265\displaystyle \Rightarrow \dfrac { 3\lambda +2 }{ \lambda +1 } =\dfrac { 13 }{ 5 } ,\dfrac { 5\lambda +2 }{ \lambda +1 } =\dfrac { 19 }{ 5 } ,\dfrac { 6\lambda +4 }{ \lambda +1 } =\dfrac { 26 }{ 5 }

    λ=32 \Rightarrow \lambda =\dfrac { 3 }{ 2 }

  • Question 7
    1 / -0
    The distance of the point (1,2,3)\left( 1,-2,3 \right) from the plane xy+z=5x-y+z=5 measured parallel to the line  x2=y3=z16\displaystyle \frac { x }{ 2 } =\frac { y }{ 3 } =\frac { z-1 }{ -6 } is
    Solution

    Equation of the line through (1,2,3)\left( 1,-2,3 \right) parallel to the line  x2=y3=z16\displaystyle \dfrac { x }{ 2 } =\dfrac { y }{ 3 } =\dfrac { z-1 }{ -6 } is


     x12=y+23=z16=r\displaystyle \dfrac { x-1 }{ 2 } =\dfrac { y+2 }{ 3 } =\dfrac { z-1 }{ -6 } =r (say)   ...(1)(1)


    Then any point on (1)(1) is (2r+1,3r2,6r+3)\left( 2r+1,3r-2,-6r+3 \right) .


    If this point lies on the plane xy+z=5x-y+z=5, then 


     (2r+1)(3r2)+(6r+3)=57r+6=5r=17\displaystyle \left( 2r+1 \right) -\left( 3r-2 \right) +\left( -6r+3 \right) =5\Rightarrow -7r+6=5\Rightarrow r=\dfrac { 1 }{ 7 }


    Hence, the point is  (97,117,157 )\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right)


    Distance between (1,2,3)\left( 1,-2,3 \right) and  (97,117,157 )\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right)


     =(449+949+3649 ) =4949 =1\displaystyle =\sqrt { \left( \dfrac { 4 }{ 49 } +\dfrac { 9 }{ 49 } +\dfrac { 36 }{ 49 }  \right)  } =\sqrt { \dfrac { 49 }{ 49 }  } =1

  • Question 8
    1 / -0
    The ratio in which the plane rˉ.(iˉ2jˉ+3kˉ)=17\displaystyle \bar {r} .(\bar {i} - 2 \bar {j} + 3 \bar {k}) = 17 divides the line joining the points 2iˉ+4jˉ+7kˉ\displaystyle -2 \bar {i} + 4 \bar {j} + 7 \bar {k} and 3iˉ5jˉ+8kˉ\displaystyle 3 \bar {i} - 5 \bar {j} + 8 \bar {k} is
    Solution
    Let r\vec {r} be a point on a plane r.(i2j+3k)=17\vec {r} .(\vec i-2\vec j+3\vec k)=17 which divides line joining the points 2i+4j+7k-2\vec i+4\vec j+7\vec k & 3i5j+8k3\vec i-5\vec j+8\vec k in the ratio n:mn:m
    Therefore, r=r=m(2i+4j+7k)+n(3i5j+8k) m+n=(2m+3n)i+(4m5n)j+(7m+8n)km+n \vec {r}=\vec { r } =\dfrac { m\left( -2\vec i+4\vec j+7\vec k \right) +n\left( 3\vec i-5\vec j+8\vec k \right)  }{ m+n } =\dfrac { \left( -2m+3n \right) i+\left( 4m-5n \right) j+\left( 7m+8n \right) k }{ m+n } 

    Substituting r\vec {r} in equation of plane, we get
    ((2m+3n)i+(4m5n)j+(7m+8n)km+n ).(i2j+3k)=17\left( \dfrac { \left( -2m+3n \right) \vec i+\left( 4m-5n \right) \vec j+\left( 7m+8n \right) \vec k }{ m+n }  \right) .\left( \vec i-2\vec j+3\vec k \right) =17
    2m+3n8m+10n+21m+24n=17m+17n\Rightarrow -2m+3n-8m+10n+21m+24n=17m+17n
    6m+20n=0\Rightarrow -6m+20n=0
    n:m=3:10\Rightarrow n:m=3:10

    Ans: B
  • Question 9
    1 / -0
    If two vertices of a triangle ABCABC are A(1,2,4)A(-1,2,4)and B(2,3,0)B(2,-3,0),and the centroid is (2,0,2)(2,0,2) then the vertex CC has the coordinates
    Solution
    Let CC be (a,b,c)(a,b,c)
    By using the formula of centroid of triangle, we get
    G(2,0,2)=(1+2+a3,23+b3,4+0+c3)G(2,0,2) = \left(\dfrac{-1+2+a}{3},\dfrac{2-3+b}{3},\dfrac{4+0+c}{3}\right)
        (2,0,2)=(1+a3,b13,4+c3)\implies (2,0,2) = \left(\dfrac{1+a}{3},\dfrac{b-1}{3},\dfrac{4+c}{3}\right)
    Comparing the coordinates we get
    a+13=2,b13=0,4+c3=2\dfrac{a+1}{3}=2, \dfrac{b-1}{3}=0, \dfrac{4+c}{3}=2
        a=5,b=1,c=2\implies a=5, b=1, c=2
    Hence, C=(5,1,2)C=(5,1,2)
  • Question 10
    1 / -0
    Three vertices of a tetrahedron are (0,0,0),(6,5,1)(0,0,0),(6,-5,-1)and (4,1,3)(-4,1,3). If the centroid of the tetrahedron be(1,2,5)(1,-2,5) then the fourth vertex is
    Solution
    The three vertices of tetrahedron is (0,0,0)(0,0,0) , (6,5,1)(6,-5,-1) and (4,1,3)(-4,1,3)
    Let the fourth vertex be (x,y,z)(x,y,z)
    Given that the centroid is (1,2,5)(1,-2,5)
    So we have x+0+644=1\frac{x+0+6-4}{4}=1 , y+05+14=2\frac{y+0-5+1}{4}=-2 and z+0+314=5\frac{z+0+3-1}{4}=5
    x=2\Rightarrow x=2 , y=4y=-4 and z=18z=18
    Therefore the correct option is AA
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now