`
Self Studies

Introduction to Three Dimensional Geometry Test - 22

Result Self Studies

Introduction to Three Dimensional Geometry Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points $$A(1, 2, -1), B(2, 5, -2), C(4, 4, -3)$$ and $$D(3, 1, -2)$$ are
    Solution
    Given, $$A(1,2,-1), B(2,5,-2), C(4,4,-3),$$ and $$D(3,1,-2)$$

    $$AB$$ $${=}$$ $$\sqrt{{(2-1)}^{2}+{(5-2)}^{2}+{(-2+1)}^{2}}$$ $${=}$$ $$\sqrt{11}$$

    $$BC$$ $${=}$$ $$\sqrt{{(4-2)}^{2}+{(4-5)}^{2}+{(-3+2)}^{2}}$$ $${=}$$ $$\sqrt{6}$$

    $$CD$$ $${=}$$ $$\sqrt{{(3-4)}^{2}+{(1-4)}^{2}+{(-2+3)}^{2}}$$ $${=}$$ $$\sqrt{11}$$

    $$DA$$ $${=}$$ $$\sqrt{{(1-3)}^{2}+{(2-1)}^{2}+{(-1+2)}^{2}}$$ $${=}$$ $$\sqrt{6}$$

    $$AB{=}CD$$ and $$BC{=}DA$$ 

    i.e. opposite sides are equal.

    Now Direction ratio of $$AB =(1,3,-1)$$ and Direction ratio of $$BC= (2,-1,-1)$$, 

    $$\vec {AB}=\hat i+\hat j+\hat k$$     &     $$\vec {BC}=2\hat i-\hat j-\hat k $$

    $$\vec {AB}\cdot \vec {BC}=2-1-1=0$$

    As the dot product between $$AB$$ and $$BC$$ is $$0$$, that means angle between them is $$90^o$$. 

    Similarly check for $$BC$$ and $$CD$$, then you find that all angles are equal to $$90^o$$ and opposite sides are equal.

    Hence, it is a rectangle.
  • Question 2
    1 / -0
    A line passes through two point $$A (2, -3, -1)$$ and $$B (8, -1, 2)$$. The coordinates of a point on this line at a distance of $$14$$ units from $$A$$ are
    Solution
    Given points are $$A(2,-3,-1)$$ and $$B(8,-1,2)$$
    Therefore direction  ratio of $$AB$$ are $$l = \dfrac{6}{7}, m=\dfrac{2}{7},n= \dfrac{3}{7}$$ or $$l=\dfrac{-6}{7},m= \dfrac{-2}{7},n= \dfrac{-3}{7}$$
    Hence, coordinates of a point $$14$$ unit from point $$A$$ is given as,$$(2+14l,-3+14m,-1+14n)$$
    $$\Rightarrow (14,1,5)$$ or $$(-10,-7,-7)$$
    Hence, option 'A' is correct.
  • Question 3
    1 / -0
    The chord of contact of tangents from a point $$P$$ to a circle passes  through $$q$$If $$l_1$$ and $$l_2$$ are the lengths of the tangents from $$P$$ and $$Q$$ to the circle, then $$PQ$$ is equal to
    Solution
    Let $$P\equiv \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$Q\equiv \left( { x }_{ 2 },{ y }_{ 2 } \right) $$
    Let the equation of given circle be $${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$$
    The equation of chord of contact of tangent drawn from the point $$P\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ to the given circle is $${ xx }_{ 1 }+{ yy }_{ 1 }={ a }^{ 2 }$$.
    Since it passes through $$Q\left( { x }_{ 2 },{ y }_{ 2 } \right) $$
    $$\therefore { x }_{ 1 }{ x }_{ 2 }+{ y }_{ 1 }{ y }_{ 2 }={ a }^{ 2 }$$ ...(1)
    Now $${ l }_{ 1 }=\sqrt { { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }-{ a }^{ 2 } } ,{ l }_{ 2 }=\sqrt { { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } } $$
    and $$\\ PQ=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right) }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right) }^{ 2 } } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 } \right) +\left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 } \right) -2\left( { x }_{ 1 }{ x }_{ 2 }+{ y }_{ 1 }{ y }_{ 2 } \right) } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 } \right) +\left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } \right) } \\ =\sqrt { \left( { x }_{ 1 }^{ 2 }+{ y }_{ 1 }^{ 2 }-{ a }^{ 2 } \right) \left( { x }_{ 2 }^{ 2 }+{ y }_{ 2 }^{ 2 }-{ a }^{ 2 } \right) } \\ =\sqrt { { l }_{ 1 }^{ 2 }+{ l }_{ 2 }^{ 2 } } $$
  • Question 4
    1 / -0
    Find the coordinates of the point on the $$x$$-axis that is equidistant from $$P(4,3,1)$$ and $$Q(-2,-6,-2)$$.
    Solution
    Let $$R(x,0,0)$$ be the point on $$x$$-axis which is equidistant from $$P(4,3,1)$$ and $$Q(-2,-6,-2)$$
    $$\Rightarrow { \left( x-4 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 }+{ \left( -1 \right)  }^{ 2 }={ \left( x+2 \right)  }^{ 2 }+{ 6 }^{ 2 }+{ 2 }^{ 2 }$$ gives $$-12x=18$$ 
    So $$x=-1.5$$ 
    Hence, $$\displaystyle  R\equiv \left( -\frac { 3 }{ 2 } ,0,0 \right) $$
  • Question 5
    1 / -0
    If $$(1,-1,0),(-2,1,8)$$ and $$(-1,2,7)$$ are three consecutive vertices of a parallelogram then the fourth vertex is
    Solution
    Let the fourth vertex be $$(h,k,l)$$
    The midpoints of diagonal will be same
    The midpoints are $$(0,\frac{1}{2},\frac{7}{2})$$ and $$(\frac{h-2}{2} , \frac{k+1}{2},\frac{l+8}{2})$$
    If we equate both we get $$h-2=0 , k+1=1 , l+8=7$$
    $$\Rightarrow h=2 , k=0 , l=-1$$
    So the fourth vertex is $$(2,0,-1)$$
  • Question 6
    1 / -0
    If $$P(x,y,z)$$ is a point on the line segment joining $$Q(2,2,4)$$ and $$R(3,5,6)$$ such that the projection of $$\overrightarrow { OP } $$ on the axes are $$\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } $$ respectively, then $$P$$ divides $$QR$$ in ratio
    Solution

    Since $$\overrightarrow { OP } $$ has projection $$\displaystyle \dfrac { 13 }{ 5 } ,\dfrac { 19 }{ 5 } $$ and $$\displaystyle \dfrac { 26 }{ 5 } $$ on the coordinate axes, therefore $$\displaystyle \overrightarrow { OP } =\dfrac { 13 }{ 5 } i+\dfrac { 19 }{ 5 } j+\dfrac { 26 }{ 5 } k$$

    Let $$P$$ divides the join of $$Q\left( 2,2,4 \right) $$ and $$R\left( 3,5,6 \right) $$ in the ratio $$\lambda :1$$.

    The position vector of $$P$$ is $$\displaystyle \left( \dfrac { 3\lambda +2 }{ \lambda +1 }  \right) i+\left( \dfrac { 5\lambda +2 }{ \lambda +1 }  \right) j+\left( \dfrac { 6\lambda +4 }{ \lambda +1 }  \right) k$$

    $$\displaystyle \therefore \dfrac { 13 }{ 5 } i+\dfrac { 19 }{ 5 } j+\dfrac { 26 }{ 5 } k=\left( \dfrac { 3\lambda +2 }{ \lambda +1 }  \right) i+\left( \dfrac { 5\lambda +2 }{ \lambda +1 }  \right) j+\left( \dfrac { 6\lambda +4 }{ \lambda +1 }  \right) k$$

    $$\displaystyle \Rightarrow \dfrac { 3\lambda +2 }{ \lambda +1 } =\dfrac { 13 }{ 5 } ,\dfrac { 5\lambda +2 }{ \lambda +1 } =\dfrac { 19 }{ 5 } ,\dfrac { 6\lambda +4 }{ \lambda +1 } =\dfrac { 26 }{ 5 }$$

    $$ \Rightarrow \lambda =\dfrac { 3 }{ 2 } $$

  • Question 7
    1 / -0
    The distance of the point $$\left( 1,-2,3 \right) $$ from the plane $$x-y+z=5$$ measured parallel to the line $$\displaystyle \frac { x }{ 2 } =\frac { y }{ 3 } =\frac { z-1 }{ -6 } $$ is
    Solution

    Equation of the line through $$\left( 1,-2,3 \right) $$ parallel to the line $$\displaystyle \dfrac { x }{ 2 } =\dfrac { y }{ 3 } =\dfrac { z-1 }{ -6 } $$ is


    $$\displaystyle \dfrac { x-1 }{ 2 } =\dfrac { y+2 }{ 3 } =\dfrac { z-1 }{ -6 } =r$$ (say)   ...$$(1)$$


    Then any point on $$(1)$$ is $$\left( 2r+1,3r-2,-6r+3 \right) $$.


    If this point lies on the plane $$x-y+z=5$$, then 


    $$\displaystyle \left( 2r+1 \right) -\left( 3r-2 \right) +\left( -6r+3 \right) =5\Rightarrow -7r+6=5\Rightarrow r=\dfrac { 1 }{ 7 } $$


    Hence, the point is $$\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $$


    Distance between $$\left( 1,-2,3 \right) $$ and $$\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $$


    $$\displaystyle =\sqrt { \left( \dfrac { 4 }{ 49 } +\dfrac { 9 }{ 49 } +\dfrac { 36 }{ 49 }  \right)  } =\sqrt { \dfrac { 49 }{ 49 }  } =1$$

  • Question 8
    1 / -0
    The ratio in which the plane $$\displaystyle \bar {r} .(\bar {i} - 2 \bar {j} + 3 \bar {k}) = 17$$ divides the line joining the points $$\displaystyle -2 \bar {i} + 4 \bar {j} + 7 \bar {k} $$ and $$\displaystyle 3 \bar {i} - 5 \bar {j} + 8 \bar {k}$$ is
    Solution
    Let $$\vec {r}$$ be a point on a plane $$\vec {r} .(\vec i-2\vec j+3\vec k)=17$$ which divides line joining the points $$-2\vec i+4\vec j+7\vec k$$ & $$3\vec i-5\vec j+8\vec k$$ in the ratio $$n:m$$
    Therefore, $$\vec {r}=\vec { r } =\dfrac { m\left( -2\vec i+4\vec j+7\vec k \right) +n\left( 3\vec i-5\vec j+8\vec k \right)  }{ m+n } =\dfrac { \left( -2m+3n \right) i+\left( 4m-5n \right) j+\left( 7m+8n \right) k }{ m+n } $$

    Substituting $$\vec {r}$$ in equation of plane, we get
    $$\left( \dfrac { \left( -2m+3n \right) \vec i+\left( 4m-5n \right) \vec j+\left( 7m+8n \right) \vec k }{ m+n }  \right) .\left( \vec i-2\vec j+3\vec k \right) =17$$
    $$\Rightarrow -2m+3n-8m+10n+21m+24n=17m+17n$$
    $$\Rightarrow -6m+20n=0$$
    $$\Rightarrow n:m=3:10$$

    Ans: B
  • Question 9
    1 / -0
    If two vertices of a triangle $$ABC$$ are $$A(-1,2,4)$$and $$B(2,-3,0)$$,and the centroid is $$(2,0,2)$$ then the vertex $$C$$ has the coordinates
    Solution
    Let $$C$$ be $$(a,b,c)$$
    By using the formula of centroid of triangle, we get
    $$G(2,0,2) = \left(\dfrac{-1+2+a}{3},\dfrac{2-3+b}{3},\dfrac{4+0+c}{3}\right)$$
    $$\implies (2,0,2) = \left(\dfrac{1+a}{3},\dfrac{b-1}{3},\dfrac{4+c}{3}\right)$$
    Comparing the coordinates we get
    $$\dfrac{a+1}{3}=2, \dfrac{b-1}{3}=0, \dfrac{4+c}{3}=2$$
    $$\implies a=5, b=1, c=2$$
    Hence, $$C=(5,1,2)$$
  • Question 10
    1 / -0
    Three vertices of a tetrahedron are $$(0,0,0),(6,-5,-1)$$and $$(-4,1,3)$$. If the centroid of the tetrahedron be$$(1,-2,5)$$ then the fourth vertex is
    Solution
    The three vertices of tetrahedron is $$(0,0,0)$$ , $$(6,-5,-1)$$ and $$(-4,1,3)$$
    Let the fourth vertex be $$(x,y,z)$$
    Given that the centroid is $$(1,-2,5)$$
    So we have $$\frac{x+0+6-4}{4}=1$$ , $$\frac{y+0-5+1}{4}=-2$$ and $$\frac{z+0+3-1}{4}=5$$
    $$\Rightarrow x=2$$ , $$y=-4$$ and $$z=18$$
    Therefore the correct option is $$A$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now