Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    if x=cos3θ,y=sin3θx=\cos^{3}\theta,y=\sin^{3}\theta, then 1+(dydx)2=\sqrt{1+\left(\dfrac{dy}{dx}\right)^{2}}=

  • Question 2
    1 / -0

    limx260+x234sin(x2)    \displaystyle \lim _{ x\rightarrow 2 }{ \frac { \sqrt [ 3 ]{ 60+{ x }^{ 2 } } -4 }{ \sin { \left( x-2 \right)  }  }  } 

  • Question 3
    1 / -0

    The value of limx0csc4x0x2ln(1+4t) t2+1 dt \displaystyle \lim _{ x\rightarrow 0 }{ \csc^{ 4 }{ x } \int _{ 0 }^{ { x }^{ 2 } }{ \frac { ln\left( 1+4t \right)  }{ { t }^{ 2 }+1 }  } dt }  is 

  • Question 4
    1 / -0

    limx0+(cscx)1/logx\displaystyle \lim_{x\rightarrow 0^{+}}{(\csc x)^{1/\log x}}=

  • Question 5
    1 / -0

    limxx2sin(logecosπx)\displaystyle \lim_{x\rightarrow \infty}{x^{2}\sin\left(\log_{e}\sqrt{\cos\dfrac{\pi}{x}}\right)}

  • Question 6
    1 / -0

     limxπ 2 cot xcosx(π2x)3 \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { cot \,  x-cos\, x }{ \left( \pi -{ 2x } \right)^ 3 } equals

  • Question 7
    1 / -0

    limxπ 2 (1sinx)(8x2π 3)cosx(π2x)4\underset { x\rightarrow \frac { \pi  }{ 2 }  }{ lim } \frac { (1-sinx)({ 8x }^{ 2 }-{ \pi  }^{ 3 })cosx }{ { (\pi -2x) }^{ 4 } }

  • Question 8
    1 / -0

    limn1n2[sin3π4n+2sin32π4n+3sin33π4n+....+nsin3nπ4n]=\lim_{n\rightarrow \infty}\dfrac{1}{n^{2}}\left[\sin^{3}\dfrac{\pi}{4n}+2\sin^{3}\dfrac{2\pi}{4n}+3\sin^{3}\dfrac{3\pi}{4n}+....+n\sin^{3}\dfrac{n\pi}{4n}\right]=

  • Question 9
    1 / -0

    If αandβ \alpha \quad and \beta are the roots of the equation  ax2+bx+c=0 {ax}^{2}+bx+c=0 , then 
      limxπ 2 tan[(α+β )x] sin[(αβ )x]   \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { tan\left[ \left( \alpha +\beta  \right) x \right]  }{ sin\left[ \left( \alpha \beta  \right) x \right]  }  is equal to :

  • Question 10
    1 / -0

    If L=limx0asinxsin2xtan3xL = \underset{x \rightarrow 0}{lim} \dfrac{a \, sin \, x - sin \, 2x}{tan^3 x} is finite, then the value of L is :

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now